Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -140,8 +140,8 @@ st.set_page_config(
|
|
140 |
|
141 |
# Constants
|
142 |
DEFAULT_GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
143 |
-
MODEL_NAME = "
|
144 |
-
DEFAULT_DOCUMENT_PATH = "lawbook.pdf"
|
145 |
DEFAULT_COLLECTION_NAME = "pakistan_laws_default"
|
146 |
CHROMA_PERSIST_DIR = "./chroma_db"
|
147 |
|
@@ -179,49 +179,41 @@ def setup_llm():
|
|
179 |
|
180 |
def check_default_db_exists():
|
181 |
"""Check if the default document database already exists"""
|
182 |
-
|
183 |
-
return True
|
184 |
-
return False
|
185 |
|
186 |
def load_existing_vectordb(collection_name):
|
187 |
"""Load an existing vector database from disk"""
|
188 |
embeddings = setup_embeddings()
|
189 |
try:
|
190 |
-
|
191 |
persist_directory=CHROMA_PERSIST_DIR,
|
192 |
embedding_function=embeddings,
|
193 |
collection_name=collection_name
|
194 |
)
|
195 |
-
return db
|
196 |
except Exception as e:
|
197 |
st.error(f"Error loading existing database: {str(e)}")
|
198 |
return None
|
199 |
|
200 |
def process_default_document(force_rebuild=False):
|
201 |
-
"""Process the default Pakistan laws document
|
202 |
-
# Check if database already exists
|
203 |
if check_default_db_exists() and not force_rebuild:
|
204 |
st.info("Loading existing Pakistan law database...")
|
205 |
db = load_existing_vectordb(DEFAULT_COLLECTION_NAME)
|
206 |
-
if db
|
207 |
st.session_state.vectordb = db
|
208 |
setup_qa_chain()
|
209 |
st.session_state.using_custom_docs = False
|
210 |
return True
|
211 |
|
212 |
-
# If database doesn't exist or force rebuild, create it
|
213 |
if not os.path.exists(DEFAULT_DOCUMENT_PATH):
|
214 |
-
st.error(f"Default document {DEFAULT_DOCUMENT_PATH} not found.
|
215 |
return False
|
216 |
|
217 |
-
embeddings = setup_embeddings()
|
218 |
-
|
219 |
try:
|
220 |
-
with st.spinner("Building Pakistan law database
|
221 |
loader = PyPDFLoader(DEFAULT_DOCUMENT_PATH)
|
222 |
documents = loader.load()
|
223 |
|
224 |
-
# Add source filename to metadata
|
225 |
for doc in documents:
|
226 |
doc.metadata["source"] = "Pakistan Laws (Official)"
|
227 |
|
@@ -231,61 +223,44 @@ def process_default_document(force_rebuild=False):
|
|
231 |
)
|
232 |
chunks = text_splitter.split_documents(documents)
|
233 |
|
234 |
-
# Create vector store
|
235 |
db = Chroma.from_documents(
|
236 |
documents=chunks,
|
237 |
-
embedding=
|
238 |
collection_name=DEFAULT_COLLECTION_NAME,
|
239 |
persist_directory=CHROMA_PERSIST_DIR
|
240 |
)
|
241 |
|
242 |
-
# Explicitly persist to disk
|
243 |
db.persist()
|
244 |
-
|
245 |
st.session_state.vectordb = db
|
246 |
setup_qa_chain()
|
247 |
st.session_state.using_custom_docs = False
|
248 |
-
|
249 |
return True
|
250 |
except Exception as e:
|
251 |
st.error(f"Error processing default document: {str(e)}")
|
252 |
return False
|
253 |
|
254 |
-
def check_custom_db_exists(collection_name):
|
255 |
-
"""Check if a custom document database already exists"""
|
256 |
-
if os.path.exists(os.path.join(CHROMA_PERSIST_DIR, collection_name)):
|
257 |
-
return True
|
258 |
-
return False
|
259 |
-
|
260 |
def process_custom_documents(uploaded_files):
|
261 |
"""Process user-uploaded PDF documents"""
|
262 |
embeddings = setup_embeddings()
|
263 |
collection_name = st.session_state.custom_collection_name
|
264 |
-
|
265 |
documents = []
|
266 |
|
267 |
for uploaded_file in uploaded_files:
|
268 |
-
# Save file temporarily
|
269 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
|
270 |
tmp_file.write(uploaded_file.getvalue())
|
271 |
tmp_path = tmp_file.name
|
272 |
|
273 |
-
# Load and split the document
|
274 |
try:
|
275 |
loader = PyPDFLoader(tmp_path)
|
276 |
file_docs = loader.load()
|
277 |
|
278 |
-
# Add source filename to metadata
|
279 |
for doc in file_docs:
|
280 |
doc.metadata["source"] = uploaded_file.name
|
281 |
|
282 |
documents.extend(file_docs)
|
283 |
-
|
284 |
-
# Clean up temp file
|
285 |
os.unlink(tmp_path)
|
286 |
except Exception as e:
|
287 |
st.error(f"Error processing {uploaded_file.name}: {str(e)}")
|
288 |
-
continue
|
289 |
|
290 |
if documents:
|
291 |
text_splitter = RecursiveCharacterTextSplitter(
|
@@ -294,19 +269,18 @@ def process_custom_documents(uploaded_files):
|
|
294 |
)
|
295 |
chunks = text_splitter.split_documents(documents)
|
296 |
|
297 |
-
# Create vector store
|
298 |
with st.spinner("Building custom document database..."):
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
|
|
|
|
303 |
persist_directory=CHROMA_PERSIST_DIR,
|
304 |
embedding_function=embeddings,
|
305 |
collection_name=collection_name
|
306 |
-
)
|
307 |
-
temp_db.delete_collection()
|
308 |
|
309 |
-
# Create new vector store
|
310 |
db = Chroma.from_documents(
|
311 |
documents=chunks,
|
312 |
embedding=embeddings,
|
@@ -314,25 +288,18 @@ def process_custom_documents(uploaded_files):
|
|
314 |
persist_directory=CHROMA_PERSIST_DIR
|
315 |
)
|
316 |
|
317 |
-
# Explicitly persist to disk
|
318 |
db.persist()
|
319 |
-
|
320 |
st.session_state.vectordb = db
|
321 |
setup_qa_chain()
|
322 |
st.session_state.using_custom_docs = True
|
323 |
-
|
324 |
return True
|
325 |
return False
|
326 |
|
327 |
def setup_qa_chain():
|
328 |
"""Set up the QA chain with the RAG system"""
|
329 |
if st.session_state.vectordb:
|
330 |
-
llm = setup_llm()
|
331 |
-
|
332 |
-
# Create prompt template
|
333 |
template = """You are a helpful legal assistant specializing in Pakistani law.
|
334 |
-
Use the
|
335 |
-
say that you don't have enough information, but provide general legal information if possible.
|
336 |
|
337 |
Context: {context}
|
338 |
|
@@ -340,52 +307,33 @@ def setup_qa_chain():
|
|
340 |
|
341 |
Answer:"""
|
342 |
|
343 |
-
prompt = ChatPromptTemplate.from_template(template)
|
344 |
-
|
345 |
-
# Create the QA chain
|
346 |
st.session_state.qa_chain = RetrievalQA.from_chain_type(
|
347 |
-
llm=
|
348 |
chain_type="stuff",
|
349 |
retriever=st.session_state.vectordb.as_retriever(search_kwargs={"k": 3}),
|
350 |
-
chain_type_kwargs={"prompt":
|
351 |
return_source_documents=True
|
352 |
)
|
353 |
|
354 |
def generate_similar_questions(question, docs):
|
355 |
"""Generate similar questions based on retrieved documents"""
|
356 |
llm = setup_llm()
|
357 |
-
|
358 |
-
# Extract key content from docs
|
359 |
context = "\n".join([doc.page_content for doc in docs[:2]])
|
360 |
|
361 |
-
|
362 |
-
prompt = f"""Based on the following user question and legal context, generate 3 similar questions that the user might also be interested in.
|
363 |
-
Make the questions specific, related to Pakistani law, and directly relevant to the original question.
|
364 |
-
|
365 |
Original Question: {question}
|
366 |
-
|
367 |
Legal Context: {context}
|
368 |
-
|
369 |
Generate exactly 3 similar questions:"""
|
370 |
|
371 |
try:
|
372 |
response = llm.invoke(prompt)
|
373 |
-
# Extract questions from response using regex
|
374 |
questions = re.findall(r"\d+\.\s+(.*?)(?=\d+\.|$)", response.content, re.DOTALL)
|
375 |
-
|
376 |
-
questions = response.content.split("\n")
|
377 |
-
questions = [q.strip() for q in questions if q.strip() and not q.startswith("Similar") and "?" in q]
|
378 |
-
|
379 |
-
# Clean and limit to 3 questions
|
380 |
-
questions = [q.strip().replace("\n", " ") for q in questions if "?" in q]
|
381 |
-
return questions[:3]
|
382 |
except Exception as e:
|
383 |
-
print(f"Error generating similar questions: {e}")
|
384 |
return []
|
385 |
|
386 |
def get_answer(question):
|
387 |
"""Get answer from QA chain"""
|
388 |
-
# If default documents haven't been processed yet, try to load them
|
389 |
if not st.session_state.vectordb:
|
390 |
with st.spinner("Loading Pakistan law database..."):
|
391 |
process_default_document()
|
@@ -393,71 +341,56 @@ def get_answer(question):
|
|
393 |
if st.session_state.qa_chain:
|
394 |
result = st.session_state.qa_chain({"query": question})
|
395 |
answer = result["result"]
|
396 |
-
|
397 |
-
# Generate similar questions
|
398 |
-
source_docs = result.get("source_documents", [])
|
399 |
-
st.session_state.similar_questions = generate_similar_questions(question, source_docs)
|
400 |
-
|
401 |
-
# Add source information
|
402 |
sources = set()
|
403 |
-
|
|
|
404 |
if "source" in doc.metadata:
|
405 |
sources.add(doc.metadata["source"])
|
406 |
|
407 |
if sources:
|
408 |
answer += f"\n\nSources: {', '.join(sources)}"
|
409 |
|
|
|
|
|
|
|
410 |
return answer
|
411 |
-
|
412 |
-
return "Initializing the knowledge base. Please try again in a moment."
|
413 |
|
414 |
def main():
|
415 |
-
|
|
|
416 |
|
417 |
-
# Determine current mode
|
418 |
if st.session_state.using_custom_docs:
|
419 |
st.subheader("Training on your personal resources")
|
420 |
else:
|
421 |
-
st.subheader("Powered by
|
422 |
|
423 |
-
# Sidebar for uploading documents and switching modes
|
424 |
with st.sidebar:
|
425 |
st.header("Resource Management")
|
426 |
|
427 |
-
# Option to return to default documents
|
428 |
if st.session_state.using_custom_docs:
|
429 |
if st.button("Return to Official Database"):
|
430 |
-
with st.spinner("Loading official
|
431 |
process_default_document()
|
432 |
-
st.
|
433 |
-
st.session_state.messages.append(AIMessage(content="Switched to official Pakistan law database. You can now ask legal questions."))
|
434 |
st.rerun()
|
435 |
|
436 |
-
# Option to rebuild the default database
|
437 |
if not st.session_state.using_custom_docs:
|
438 |
if st.button("Rebuild Official Database"):
|
439 |
-
with st.spinner("Rebuilding
|
440 |
process_default_document(force_rebuild=True)
|
441 |
-
st.success("Official database rebuilt successfully!")
|
442 |
st.rerun()
|
443 |
|
444 |
-
|
445 |
-
st.header("Upload Custom Legal Documents")
|
446 |
uploaded_files = st.file_uploader(
|
447 |
-
"Upload
|
448 |
-
type=["pdf"],
|
449 |
-
accept_multiple_files=True
|
450 |
-
)
|
451 |
|
452 |
if st.button("Train on Uploaded Documents") and uploaded_files:
|
453 |
-
with st.spinner("Processing
|
454 |
-
|
455 |
-
|
456 |
-
st.success("Your documents processed successfully!")
|
457 |
-
st.session_state.messages.append(AIMessage(content="Custom legal documents loaded successfully. You are now training on your personal resources."))
|
458 |
st.rerun()
|
459 |
-
|
460 |
-
# Display chat messages
|
461 |
for message in st.session_state.messages:
|
462 |
if isinstance(message, HumanMessage):
|
463 |
with st.chat_message("user"):
|
@@ -465,42 +398,29 @@ def main():
|
|
465 |
else:
|
466 |
with st.chat_message("assistant", avatar="⚖️"):
|
467 |
st.write(message.content)
|
468 |
-
|
469 |
-
# Display similar questions if available
|
470 |
if st.session_state.similar_questions:
|
471 |
st.markdown("#### Related Questions:")
|
472 |
cols = st.columns(len(st.session_state.similar_questions))
|
473 |
-
for i,
|
474 |
-
if cols[i].button(
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
with st.chat_message("assistant", avatar="⚖️"):
|
480 |
-
with st.spinner("Thinking..."):
|
481 |
-
response = get_answer(question)
|
482 |
-
st.write(response)
|
483 |
-
|
484 |
-
# Add assistant response to chat history
|
485 |
-
st.session_state.messages.append(AIMessage(content=response))
|
486 |
st.rerun()
|
487 |
-
|
488 |
-
# Input for new question
|
489 |
if user_input := st.chat_input("Ask a legal question..."):
|
490 |
-
# Add user message to chat history
|
491 |
st.session_state.messages.append(HumanMessage(content=user_input))
|
492 |
|
493 |
-
# Display user message
|
494 |
with st.chat_message("user"):
|
495 |
st.write(user_input)
|
496 |
|
497 |
-
# Generate and display assistant response
|
498 |
with st.chat_message("assistant", avatar="⚖️"):
|
499 |
with st.spinner("Thinking..."):
|
500 |
response = get_answer(user_input)
|
501 |
st.write(response)
|
502 |
|
503 |
-
# Add assistant response to chat history
|
504 |
st.session_state.messages.append(AIMessage(content=response))
|
505 |
st.rerun()
|
506 |
|
|
|
140 |
|
141 |
# Constants
|
142 |
DEFAULT_GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
143 |
+
MODEL_NAME = "llama3-70b-8192"
|
144 |
+
DEFAULT_DOCUMENT_PATH = "lawbook.pdf"
|
145 |
DEFAULT_COLLECTION_NAME = "pakistan_laws_default"
|
146 |
CHROMA_PERSIST_DIR = "./chroma_db"
|
147 |
|
|
|
179 |
|
180 |
def check_default_db_exists():
|
181 |
"""Check if the default document database already exists"""
|
182 |
+
return os.path.exists(os.path.join(CHROMA_PERSIST_DIR, DEFAULT_COLLECTION_NAME))
|
|
|
|
|
183 |
|
184 |
def load_existing_vectordb(collection_name):
|
185 |
"""Load an existing vector database from disk"""
|
186 |
embeddings = setup_embeddings()
|
187 |
try:
|
188 |
+
return Chroma(
|
189 |
persist_directory=CHROMA_PERSIST_DIR,
|
190 |
embedding_function=embeddings,
|
191 |
collection_name=collection_name
|
192 |
)
|
|
|
193 |
except Exception as e:
|
194 |
st.error(f"Error loading existing database: {str(e)}")
|
195 |
return None
|
196 |
|
197 |
def process_default_document(force_rebuild=False):
|
198 |
+
"""Process the default Pakistan laws document"""
|
|
|
199 |
if check_default_db_exists() and not force_rebuild:
|
200 |
st.info("Loading existing Pakistan law database...")
|
201 |
db = load_existing_vectordb(DEFAULT_COLLECTION_NAME)
|
202 |
+
if db:
|
203 |
st.session_state.vectordb = db
|
204 |
setup_qa_chain()
|
205 |
st.session_state.using_custom_docs = False
|
206 |
return True
|
207 |
|
|
|
208 |
if not os.path.exists(DEFAULT_DOCUMENT_PATH):
|
209 |
+
st.error(f"Default document {DEFAULT_DOCUMENT_PATH} not found.")
|
210 |
return False
|
211 |
|
|
|
|
|
212 |
try:
|
213 |
+
with st.spinner("Building Pakistan law database..."):
|
214 |
loader = PyPDFLoader(DEFAULT_DOCUMENT_PATH)
|
215 |
documents = loader.load()
|
216 |
|
|
|
217 |
for doc in documents:
|
218 |
doc.metadata["source"] = "Pakistan Laws (Official)"
|
219 |
|
|
|
223 |
)
|
224 |
chunks = text_splitter.split_documents(documents)
|
225 |
|
|
|
226 |
db = Chroma.from_documents(
|
227 |
documents=chunks,
|
228 |
+
embedding=setup_embeddings(),
|
229 |
collection_name=DEFAULT_COLLECTION_NAME,
|
230 |
persist_directory=CHROMA_PERSIST_DIR
|
231 |
)
|
232 |
|
|
|
233 |
db.persist()
|
|
|
234 |
st.session_state.vectordb = db
|
235 |
setup_qa_chain()
|
236 |
st.session_state.using_custom_docs = False
|
|
|
237 |
return True
|
238 |
except Exception as e:
|
239 |
st.error(f"Error processing default document: {str(e)}")
|
240 |
return False
|
241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
def process_custom_documents(uploaded_files):
|
243 |
"""Process user-uploaded PDF documents"""
|
244 |
embeddings = setup_embeddings()
|
245 |
collection_name = st.session_state.custom_collection_name
|
|
|
246 |
documents = []
|
247 |
|
248 |
for uploaded_file in uploaded_files:
|
|
|
249 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
|
250 |
tmp_file.write(uploaded_file.getvalue())
|
251 |
tmp_path = tmp_file.name
|
252 |
|
|
|
253 |
try:
|
254 |
loader = PyPDFLoader(tmp_path)
|
255 |
file_docs = loader.load()
|
256 |
|
|
|
257 |
for doc in file_docs:
|
258 |
doc.metadata["source"] = uploaded_file.name
|
259 |
|
260 |
documents.extend(file_docs)
|
|
|
|
|
261 |
os.unlink(tmp_path)
|
262 |
except Exception as e:
|
263 |
st.error(f"Error processing {uploaded_file.name}: {str(e)}")
|
|
|
264 |
|
265 |
if documents:
|
266 |
text_splitter = RecursiveCharacterTextSplitter(
|
|
|
269 |
)
|
270 |
chunks = text_splitter.split_documents(documents)
|
271 |
|
|
|
272 |
with st.spinner("Building custom document database..."):
|
273 |
+
if Chroma(
|
274 |
+
persist_directory=CHROMA_PERSIST_DIR,
|
275 |
+
embedding_function=embeddings,
|
276 |
+
collection_name=collection_name
|
277 |
+
).get():
|
278 |
+
Chroma(
|
279 |
persist_directory=CHROMA_PERSIST_DIR,
|
280 |
embedding_function=embeddings,
|
281 |
collection_name=collection_name
|
282 |
+
).delete_collection()
|
|
|
283 |
|
|
|
284 |
db = Chroma.from_documents(
|
285 |
documents=chunks,
|
286 |
embedding=embeddings,
|
|
|
288 |
persist_directory=CHROMA_PERSIST_DIR
|
289 |
)
|
290 |
|
|
|
291 |
db.persist()
|
|
|
292 |
st.session_state.vectordb = db
|
293 |
setup_qa_chain()
|
294 |
st.session_state.using_custom_docs = True
|
|
|
295 |
return True
|
296 |
return False
|
297 |
|
298 |
def setup_qa_chain():
|
299 |
"""Set up the QA chain with the RAG system"""
|
300 |
if st.session_state.vectordb:
|
|
|
|
|
|
|
301 |
template = """You are a helpful legal assistant specializing in Pakistani law.
|
302 |
+
Use the context to answer. If unsure, say so but provide general info.
|
|
|
303 |
|
304 |
Context: {context}
|
305 |
|
|
|
307 |
|
308 |
Answer:"""
|
309 |
|
|
|
|
|
|
|
310 |
st.session_state.qa_chain = RetrievalQA.from_chain_type(
|
311 |
+
llm=setup_llm(),
|
312 |
chain_type="stuff",
|
313 |
retriever=st.session_state.vectordb.as_retriever(search_kwargs={"k": 3}),
|
314 |
+
chain_type_kwargs={"prompt": ChatPromptTemplate.from_template(template)},
|
315 |
return_source_documents=True
|
316 |
)
|
317 |
|
318 |
def generate_similar_questions(question, docs):
|
319 |
"""Generate similar questions based on retrieved documents"""
|
320 |
llm = setup_llm()
|
|
|
|
|
321 |
context = "\n".join([doc.page_content for doc in docs[:2]])
|
322 |
|
323 |
+
prompt = f"""Generate 3 similar questions based on:
|
|
|
|
|
|
|
324 |
Original Question: {question}
|
|
|
325 |
Legal Context: {context}
|
|
|
326 |
Generate exactly 3 similar questions:"""
|
327 |
|
328 |
try:
|
329 |
response = llm.invoke(prompt)
|
|
|
330 |
questions = re.findall(r"\d+\.\s+(.*?)(?=\d+\.|$)", response.content, re.DOTALL)
|
331 |
+
return [q.strip() for q in questions[:3] if "?" in q]
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
except Exception as e:
|
|
|
333 |
return []
|
334 |
|
335 |
def get_answer(question):
|
336 |
"""Get answer from QA chain"""
|
|
|
337 |
if not st.session_state.vectordb:
|
338 |
with st.spinner("Loading Pakistan law database..."):
|
339 |
process_default_document()
|
|
|
341 |
if st.session_state.qa_chain:
|
342 |
result = st.session_state.qa_chain({"query": question})
|
343 |
answer = result["result"]
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
sources = set()
|
345 |
+
|
346 |
+
for doc in result.get("source_documents", []):
|
347 |
if "source" in doc.metadata:
|
348 |
sources.add(doc.metadata["source"])
|
349 |
|
350 |
if sources:
|
351 |
answer += f"\n\nSources: {', '.join(sources)}"
|
352 |
|
353 |
+
st.session_state.similar_questions = generate_similar_questions(
|
354 |
+
question, result.get("source_documents", [])
|
355 |
+
)
|
356 |
return answer
|
357 |
+
return "Initializing knowledge base..."
|
|
|
358 |
|
359 |
def main():
|
360 |
+
inject_custom_css() # CSS injection added here
|
361 |
+
st.title("Pakistan Law AI Agent ⚖️")
|
362 |
|
|
|
363 |
if st.session_state.using_custom_docs:
|
364 |
st.subheader("Training on your personal resources")
|
365 |
else:
|
366 |
+
st.subheader("Powered by Pakistan law database")
|
367 |
|
|
|
368 |
with st.sidebar:
|
369 |
st.header("Resource Management")
|
370 |
|
|
|
371 |
if st.session_state.using_custom_docs:
|
372 |
if st.button("Return to Official Database"):
|
373 |
+
with st.spinner("Loading official database..."):
|
374 |
process_default_document()
|
375 |
+
st.session_state.messages.append(AIMessage(content="Switched to official database!"))
|
|
|
376 |
st.rerun()
|
377 |
|
|
|
378 |
if not st.session_state.using_custom_docs:
|
379 |
if st.button("Rebuild Official Database"):
|
380 |
+
with st.spinner("Rebuilding..."):
|
381 |
process_default_document(force_rebuild=True)
|
|
|
382 |
st.rerun()
|
383 |
|
384 |
+
st.header("Upload Custom Documents")
|
|
|
385 |
uploaded_files = st.file_uploader(
|
386 |
+
"Upload PDFs", type=["pdf"], accept_multiple_files=True)
|
|
|
|
|
|
|
387 |
|
388 |
if st.button("Train on Uploaded Documents") and uploaded_files:
|
389 |
+
with st.spinner("Processing..."):
|
390 |
+
if process_custom_documents(uploaded_files):
|
391 |
+
st.session_state.messages.append(AIMessage(content="Custom documents loaded!"))
|
|
|
|
|
392 |
st.rerun()
|
393 |
+
|
|
|
394 |
for message in st.session_state.messages:
|
395 |
if isinstance(message, HumanMessage):
|
396 |
with st.chat_message("user"):
|
|
|
398 |
else:
|
399 |
with st.chat_message("assistant", avatar="⚖️"):
|
400 |
st.write(message.content)
|
401 |
+
|
|
|
402 |
if st.session_state.similar_questions:
|
403 |
st.markdown("#### Related Questions:")
|
404 |
cols = st.columns(len(st.session_state.similar_questions))
|
405 |
+
for i, q in enumerate(st.session_state.similar_questions):
|
406 |
+
if cols[i].button(q, key=f"similar_q_{i}"):
|
407 |
+
st.session_state.messages.extend([
|
408 |
+
HumanMessage(content=q),
|
409 |
+
AIMessage(content=get_answer(q))
|
410 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
st.rerun()
|
412 |
+
|
|
|
413 |
if user_input := st.chat_input("Ask a legal question..."):
|
|
|
414 |
st.session_state.messages.append(HumanMessage(content=user_input))
|
415 |
|
|
|
416 |
with st.chat_message("user"):
|
417 |
st.write(user_input)
|
418 |
|
|
|
419 |
with st.chat_message("assistant", avatar="⚖️"):
|
420 |
with st.spinner("Thinking..."):
|
421 |
response = get_answer(user_input)
|
422 |
st.write(response)
|
423 |
|
|
|
424 |
st.session_state.messages.append(AIMessage(content=response))
|
425 |
st.rerun()
|
426 |
|