Spaces:
Sleeping
Sleeping
File size: 14,781 Bytes
d62bf95 f12016a d62bf95 45f6a23 d62bf95 a8841cf d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 f12016a d62bf95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import streamlit as st
import os
import tempfile
import uuid
from langchain_groq import ChatGroq
from langchain.prompts import ChatPromptTemplate
from langchain.schema import HumanMessage, AIMessage
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import RetrievalQA
import re
# Page Configuration
st.set_page_config(page_title="Pakistan Law AI Agent", page_icon="⚖️")
# Constants
DEFAULT_GROQ_API_KEY = os.getenv("GROQ_API_KEY")
MODEL_NAME = "llama-3.3-70b-versatile"
DEFAULT_DOCUMENT_PATH = "lawbook.pdf" # Path to your hardcoded Pakistan laws PDF
DEFAULT_COLLECTION_NAME = "pakistan_laws_default"
CHROMA_PERSIST_DIR = "./chroma_db"
# Session state initialization
if "messages" not in st.session_state:
st.session_state.messages = []
if "user_id" not in st.session_state:
st.session_state.user_id = str(uuid.uuid4())
if "vectordb" not in st.session_state:
st.session_state.vectordb = None
if "llm" not in st.session_state:
st.session_state.llm = None
if "qa_chain" not in st.session_state:
st.session_state.qa_chain = None
if "similar_questions" not in st.session_state:
st.session_state.similar_questions = []
if "using_custom_docs" not in st.session_state:
st.session_state.using_custom_docs = False
if "custom_collection_name" not in st.session_state:
st.session_state.custom_collection_name = f"custom_laws_{st.session_state.user_id}"
def setup_embeddings():
"""Sets up embeddings model"""
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
def setup_llm():
"""Setup the language model"""
if st.session_state.llm is None:
st.session_state.llm = ChatGroq(
model_name=MODEL_NAME,
groq_api_key=DEFAULT_GROQ_API_KEY,
temperature=0.2
)
return st.session_state.llm
def check_default_db_exists():
"""Check if the default document database already exists"""
if os.path.exists(os.path.join(CHROMA_PERSIST_DIR, DEFAULT_COLLECTION_NAME)):
return True
return False
def load_existing_vectordb(collection_name):
"""Load an existing vector database from disk"""
embeddings = setup_embeddings()
try:
db = Chroma(
persist_directory=CHROMA_PERSIST_DIR,
embedding_function=embeddings,
collection_name=collection_name
)
return db
except Exception as e:
st.error(f"Error loading existing database: {str(e)}")
return None
def process_default_document(force_rebuild=False):
"""Process the default Pakistan laws document or load from disk if available"""
# Check if database already exists
if check_default_db_exists() and not force_rebuild:
st.info("Loading existing Pakistan law database...")
db = load_existing_vectordb(DEFAULT_COLLECTION_NAME)
if db is not None:
st.session_state.vectordb = db
setup_qa_chain()
st.session_state.using_custom_docs = False
return True
# If database doesn't exist or force rebuild, create it
if not os.path.exists(DEFAULT_DOCUMENT_PATH):
st.error(f"Default document {DEFAULT_DOCUMENT_PATH} not found. Please make sure it exists.")
return False
embeddings = setup_embeddings()
try:
with st.spinner("Building Pakistan law database (this may take a few minutes)..."):
loader = PyPDFLoader(DEFAULT_DOCUMENT_PATH)
documents = loader.load()
# Add source filename to metadata
for doc in documents:
doc.metadata["source"] = "Pakistan Laws (Official)"
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
chunks = text_splitter.split_documents(documents)
# Create vector store
db = Chroma.from_documents(
documents=chunks,
embedding=embeddings,
collection_name=DEFAULT_COLLECTION_NAME,
persist_directory=CHROMA_PERSIST_DIR
)
# Explicitly persist to disk
db.persist()
st.session_state.vectordb = db
setup_qa_chain()
st.session_state.using_custom_docs = False
return True
except Exception as e:
st.error(f"Error processing default document: {str(e)}")
return False
def check_custom_db_exists(collection_name):
"""Check if a custom document database already exists"""
if os.path.exists(os.path.join(CHROMA_PERSIST_DIR, collection_name)):
return True
return False
def process_custom_documents(uploaded_files):
"""Process user-uploaded PDF documents"""
embeddings = setup_embeddings()
collection_name = st.session_state.custom_collection_name
documents = []
for uploaded_file in uploaded_files:
# Save file temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
tmp_file.write(uploaded_file.getvalue())
tmp_path = tmp_file.name
# Load and split the document
try:
loader = PyPDFLoader(tmp_path)
file_docs = loader.load()
# Add source filename to metadata
for doc in file_docs:
doc.metadata["source"] = uploaded_file.name
documents.extend(file_docs)
# Clean up temp file
os.unlink(tmp_path)
except Exception as e:
st.error(f"Error processing {uploaded_file.name}: {str(e)}")
continue
if documents:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
chunks = text_splitter.split_documents(documents)
# Create vector store
with st.spinner("Building custom document database..."):
# If a previous custom DB exists for this user, delete it first
if check_custom_db_exists(collection_name):
# We need to recreate the vectorstore to delete the old collection
temp_db = Chroma(
persist_directory=CHROMA_PERSIST_DIR,
embedding_function=embeddings,
collection_name=collection_name
)
temp_db.delete_collection()
# Create new vector store
db = Chroma.from_documents(
documents=chunks,
embedding=embeddings,
collection_name=collection_name,
persist_directory=CHROMA_PERSIST_DIR
)
# Explicitly persist to disk
db.persist()
st.session_state.vectordb = db
setup_qa_chain()
st.session_state.using_custom_docs = True
return True
return False
def setup_qa_chain():
"""Set up the QA chain with the RAG system"""
if st.session_state.vectordb:
llm = setup_llm()
# Create prompt template
template = """You are a helpful legal assistant specializing in Pakistani law.
Use the following context to answer the question. If you don't know the answer based on the context,
say that you don't have enough information, but provide general legal information if possible.
Context: {context}
Question: {question}
Answer:"""
prompt = ChatPromptTemplate.from_template(template)
# Create the QA chain
st.session_state.qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=st.session_state.vectordb.as_retriever(search_kwargs={"k": 3}),
chain_type_kwargs={"prompt": prompt},
return_source_documents=True
)
def generate_similar_questions(question, docs):
"""Generate similar questions based on retrieved documents"""
llm = setup_llm()
# Extract key content from docs
context = "\n".join([doc.page_content for doc in docs[:2]])
# Prompt to generate similar questions
prompt = f"""Based on the following user question and legal context, generate 3 similar questions that the user might also be interested in.
Make the questions specific, related to Pakistani law, and directly relevant to the original question.
Original Question: {question}
Legal Context: {context}
Generate exactly 3 similar questions:"""
try:
response = llm.invoke(prompt)
# Extract questions from response using regex
questions = re.findall(r"\d+\.\s+(.*?)(?=\d+\.|$)", response.content, re.DOTALL)
if not questions:
questions = response.content.split("\n")
questions = [q.strip() for q in questions if q.strip() and not q.startswith("Similar") and "?" in q]
# Clean and limit to 3 questions
questions = [q.strip().replace("\n", " ") for q in questions if "?" in q]
return questions[:3]
except Exception as e:
print(f"Error generating similar questions: {e}")
return []
def get_answer(question):
"""Get answer from QA chain"""
# If default documents haven't been processed yet, try to load them
if not st.session_state.vectordb:
with st.spinner("Loading Pakistan law database..."):
process_default_document()
if st.session_state.qa_chain:
result = st.session_state.qa_chain({"query": question})
answer = result["result"]
# Generate similar questions
source_docs = result.get("source_documents", [])
st.session_state.similar_questions = generate_similar_questions(question, source_docs)
# Add source information
sources = set()
for doc in source_docs:
if "source" in doc.metadata:
sources.add(doc.metadata["source"])
if sources:
answer += f"\n\nSources: {', '.join(sources)}"
return answer
else:
return "Initializing the knowledge base. Please try again in a moment."
def main():
st.title("Pakistan Law AI Agent")
# Determine current mode
if st.session_state.using_custom_docs:
st.subheader("Training on your personal resources")
else:
st.subheader("Powered by Pakistan law database")
# Sidebar for uploading documents and switching modes
with st.sidebar:
st.header("Resource Management")
# Option to return to default documents
if st.session_state.using_custom_docs:
if st.button("Return to Official Database"):
with st.spinner("Loading official Pakistan law database..."):
process_default_document()
st.success("Switched to official Pakistan law database!")
st.session_state.messages.append(AIMessage(content="Switched to official Pakistan law database. You can now ask legal questions."))
st.rerun()
# Option to rebuild the default database
if not st.session_state.using_custom_docs:
if st.button("Rebuild Official Database"):
with st.spinner("Rebuilding official Pakistan law database..."):
process_default_document(force_rebuild=True)
st.success("Official database rebuilt successfully!")
st.rerun()
# Option to upload custom documents
st.header("Upload Custom Legal Documents")
uploaded_files = st.file_uploader(
"Upload PDF files containing legal documents",
type=["pdf"],
accept_multiple_files=True
)
if st.button("Train on Uploaded Documents") and uploaded_files:
with st.spinner("Processing your documents..."):
success = process_custom_documents(uploaded_files)
if success:
st.success("Your documents processed successfully!")
st.session_state.messages.append(AIMessage(content="Custom legal documents loaded successfully. You are now training on your personal resources."))
st.rerun()
# Display chat messages
for message in st.session_state.messages:
if isinstance(message, HumanMessage):
with st.chat_message("user"):
st.write(message.content)
else:
with st.chat_message("assistant", avatar="⚖️"):
st.write(message.content)
# Display similar questions if available
if st.session_state.similar_questions:
st.markdown("#### Related Questions:")
cols = st.columns(len(st.session_state.similar_questions))
for i, question in enumerate(st.session_state.similar_questions):
if cols[i].button(question, key=f"similar_q_{i}"):
# Add selected question as user input
st.session_state.messages.append(HumanMessage(content=question))
# Generate and display assistant response
with st.chat_message("assistant", avatar="⚖️"):
with st.spinner("Thinking..."):
response = get_answer(question)
st.write(response)
# Add assistant response to chat history
st.session_state.messages.append(AIMessage(content=response))
st.rerun()
# Input for new question
if user_input := st.chat_input("Ask a legal question..."):
# Add user message to chat history
st.session_state.messages.append(HumanMessage(content=user_input))
# Display user message
with st.chat_message("user"):
st.write(user_input)
# Generate and display assistant response
with st.chat_message("assistant", avatar="⚖️"):
with st.spinner("Thinking..."):
response = get_answer(user_input)
st.write(response)
# Add assistant response to chat history
st.session_state.messages.append(AIMessage(content=response))
st.rerun()
if __name__ == "__main__":
main() |