usag1e commited on
Commit
f03127d
·
verified ·
1 Parent(s): 643d2ff

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -8
app.py CHANGED
@@ -1,11 +1,12 @@
1
- from fastapi import FastAPI
2
  from pydantic import BaseModel
3
  from transformers import AutoTokenizer, AutoModelForCausalLM
4
 
5
- # Load the model and tokenizer
6
  model_name = "meta-llama/Llama-3.1-8B-Instruct"
7
- tokenizer = AutoTokenizer.from_pretrained(model_name)
8
- model = AutoModelForCausalLM.from_pretrained(model_name)
 
 
9
 
10
  # Initialize FastAPI
11
  app = FastAPI()
@@ -16,7 +17,10 @@ class Prompt(BaseModel):
16
 
17
  @app.post("/generate")
18
  def generate_text(prompt: Prompt):
19
- inputs = tokenizer(prompt.text, return_tensors="pt")
20
- outputs = model.generate(**inputs, max_length=100)
21
- generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
22
- return {"generated_text": generated_text}
 
 
 
 
1
+ from fastapi import FastAPI, HTTPException
2
  from pydantic import BaseModel
3
  from transformers import AutoTokenizer, AutoModelForCausalLM
4
 
 
5
  model_name = "meta-llama/Llama-3.1-8B-Instruct"
6
+
7
+ # Use the Hugging Face token
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
9
+ model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=True)
10
 
11
  # Initialize FastAPI
12
  app = FastAPI()
 
17
 
18
  @app.post("/generate")
19
  def generate_text(prompt: Prompt):
20
+ try:
21
+ inputs = tokenizer(prompt.text, return_tensors="pt")
22
+ outputs = model.generate(**inputs, max_length=100)
23
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
24
+ return {"generated_text": generated_text}
25
+ except Exception as e:
26
+ raise HTTPException(status_code=500, detail=f"Error generating text: {str(e)}")