Spaces:
Runtime error
Runtime error
File size: 4,689 Bytes
4222961 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import re
# 我希望实现一个字符串解析函数,输入是一个string,输出是一个dict,如果字符串中出现
# "Strees:", "Affection:"或者"Darkness:",则把后面的一个有正负的浮点数作为value,对应的字符串作为key,记录在dict中
# 如果后面是?或者非数字,则记录成0
# example input:
# Stress: -1.0, Affection: +0.5
# example output:
# {"Stress":-1,"Affection":0.5 }
# exmple input:
# Affection: +4.0, Stress: -2.0, Darkness: -1.0
# example output:
# {"Stress":-1,"Affection":0.5 }
# example input:
# Affection: +2.0, Stress: -1.0, Darkness: ?
# example output:
# {"Affection": 2, "Stress": -1, "Darkness": 0 }
# example input:
# Stress: -1.0
# example output:
# {"Stress":-1}
def parse_attribute_string(attribute_str):
result = {}
patterns = {
"Stress": r"Stress:\s*([+-]?\d+(\.\d+)?)?",
"Affection": r"Affection:\s*([+-]?\d+(\.\d+)?)?",
"Darkness": r"Darkness:\s*([+-]?\d+(\.\d+)?)?"
}
for key, pattern in patterns.items():
match = re.search(pattern, attribute_str)
if match:
value = match.group(1)
if value is None:
result[key] = 0
else:
result[key] = float(value)
return result
# 我希望实现一个字符串解析函数,输入是一个string,输出是一个tuple,
# max_value = 100,字符串中可能会包含Darkness,Stress或者Affection属性中的一种,
# 如果输入为"Affection 61+", 则输出 ("Affection", 61, 100)
# 如果输入为"Darkness 0-39",则输出 ("Darkness", 0, 39)
# 输出字符串中包含的属性,区间的最小值和最大值。
# 如果不包含任何属性,则输出None
# example_input:
# Random Noon Event: Darkness 0-39
# example_output
# ("Darkness", 0 , 39)
# example_input:
# Random Noon Event: Stress 0-19
# example_output
# ("Stress", 0 , 19)
# example_input:
# Random Noon Event: Affection 61+
# example_output
# ("Affection", 61, 100)
import re
def parsing_condition_string(s):
max_value = 100 # 定义最大值
# 正则表达式匹配'属性 最小值-最大值'或'属性 最小值+'
pattern = re.compile(r'(Darkness|Stress|Affection)\s+(\d+)(?:-(\d+)|\+)')
match = pattern.search(s)
if match:
attribute = match.group(1) # 属性
min_value = int(match.group(2)) # 最小值
# 如果有最大值就直接使用,没有就用默认的max_value
max_value = int(match.group(3)) if match.group(3) else max_value
return (attribute, min_value, max_value)
return None # 如果没有匹配则返回None
#------ BGE Embedding -----------
from transformers import AutoModel, AutoTokenizer
import torch
_bge_model_zh = None
_bge_tokenizer_zh = None
def get_bge_embeddings_zh( sentences ):
# unsafe ensure batch size by yourself
global _bge_model_zh
global _bge_tokenizer_zh
if _bge_model_zh is None:
from transformers import AutoTokenizer, AutoModel
_bge_tokenizer_zh = AutoTokenizer.from_pretrained('BAAI/bge-small-zh-v1.5')
_bge_model_zh = AutoModel.from_pretrained('BAAI/bge-small-zh-v1.5')
_bge_model_zh.eval()
# Tokenize sentences
encoded_input = _bge_tokenizer_zh(sentences, padding=True, truncation=True, return_tensors='pt', max_length = 512)
# Compute token embeddings
with torch.no_grad():
model_output = _bge_model_zh(**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = model_output[0][:, 0]
# normalize embeddings
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
return sentence_embeddings.cpu().tolist()
def get_bge_embedding_zh( text_or_texts ):
if isinstance(text_or_texts, str):
return get_bge_embeddings_zh([text_or_texts])[0]
else:
return get_bge_embeddings_zh(text_or_texts)
# Encode和Decode的代码来自于ChatHaruhi
import base64
import struct
def float_array_to_base64(float_arr):
byte_array = b''
for f in float_arr:
# 将每个浮点数打包为4字节
num_bytes = struct.pack('!f', f)
byte_array += num_bytes
# 将字节数组进行base64编码
base64_data = base64.b64encode(byte_array)
return base64_data.decode('utf-8')
def base64_to_float_array(base64_data):
byte_array = base64.b64decode(base64_data)
float_array = []
# 每 4 个字节解析为一个浮点数
for i in range(0, len(byte_array), 4):
num = struct.unpack('!f', byte_array[i:i+4])[0]
float_array.append(num)
return float_array
|