Spaces:
Runtime error
Runtime error
Sean Cho
commited on
Commit
·
bcb8d03
1
Parent(s):
2a9714f
update to latest
Browse files- README.md +2 -1
- app.py +85 -68
- requirements.txt +4 -3
- src/display_models/get_model_metadata.py +50 -15
- src/display_models/model_metadata_flags.py +0 -7
- src/display_models/read_results.py +2 -2
- src/load_from_hub.py +1 -4
README.md
CHANGED
|
@@ -4,10 +4,11 @@ emoji: 📉
|
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: true
|
| 10 |
license: apache-2.0
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.43.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: true
|
| 10 |
license: apache-2.0
|
| 11 |
+
duplicated_from: HuggingFaceH4/open_llm_leaderboard
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
|
@@ -222,21 +222,6 @@ def add_new_eval(
|
|
| 222 |
|
| 223 |
|
| 224 |
# Basics
|
| 225 |
-
def refresh() -> list[pd.DataFrame]:
|
| 226 |
-
leaderboard_df = get_leaderboard_df(eval_results, eval_results_private, COLS, BENCHMARK_COLS)
|
| 227 |
-
(
|
| 228 |
-
finished_eval_queue_df,
|
| 229 |
-
running_eval_queue_df,
|
| 230 |
-
pending_eval_queue_df,
|
| 231 |
-
) = get_evaluation_queue_df(eval_queue, eval_queue_private, EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 232 |
-
return (
|
| 233 |
-
leaderboard_df,
|
| 234 |
-
finished_eval_queue_df,
|
| 235 |
-
running_eval_queue_df,
|
| 236 |
-
pending_eval_queue_df,
|
| 237 |
-
)
|
| 238 |
-
|
| 239 |
-
|
| 240 |
def change_tab(query_param: str):
|
| 241 |
query_param = query_param.replace("'", '"')
|
| 242 |
query_param = json.loads(query_param)
|
|
@@ -248,17 +233,16 @@ def change_tab(query_param: str):
|
|
| 248 |
|
| 249 |
|
| 250 |
# Searching and filtering
|
| 251 |
-
def
|
| 252 |
-
|
| 253 |
-
if
|
| 254 |
-
filtered_df =
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
else:
|
| 259 |
-
filtered_df = df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
| 260 |
-
return filtered_df[current_columns]
|
| 261 |
|
|
|
|
|
|
|
| 262 |
|
| 263 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 264 |
always_here_cols = [
|
|
@@ -272,31 +256,32 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
| 272 |
return filtered_df
|
| 273 |
|
| 274 |
NUMERIC_INTERVALS = {
|
| 275 |
-
"
|
| 276 |
-
"
|
| 277 |
-
"~
|
| 278 |
-
"~
|
| 279 |
-
|
| 280 |
-
# "
|
|
|
|
| 281 |
}
|
| 282 |
|
| 283 |
def filter_models(
|
| 284 |
-
df: pd.DataFrame,
|
| 285 |
) -> pd.DataFrame:
|
| 286 |
-
current_columns = current_columns_df.columns
|
| 287 |
-
|
| 288 |
# Show all models
|
| 289 |
if show_deleted:
|
| 290 |
-
filtered_df = df
|
| 291 |
else: # Show only still on the hub models
|
| 292 |
-
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
| 293 |
|
| 294 |
type_emoji = [t[0] for t in type_query]
|
| 295 |
filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
|
|
|
| 296 |
|
| 297 |
-
numeric_interval = [NUMERIC_INTERVALS[s] for s in size_query]
|
| 298 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 299 |
-
|
|
|
|
| 300 |
|
| 301 |
return filtered_df
|
| 302 |
|
|
@@ -310,6 +295,12 @@ with demo:
|
|
| 310 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 311 |
with gr.Row():
|
| 312 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
with gr.Row():
|
| 314 |
shown_columns = gr.CheckboxGroup(
|
| 315 |
choices=[
|
|
@@ -343,11 +334,6 @@ with demo:
|
|
| 343 |
value=True, label="👀 Show gated/private/deleted models", interactive=True
|
| 344 |
)
|
| 345 |
with gr.Column(min_width=320):
|
| 346 |
-
search_bar = gr.Textbox(
|
| 347 |
-
placeholder="🔍 Search for your model and press ENTER...",
|
| 348 |
-
show_label=False,
|
| 349 |
-
elem_id="search-bar",
|
| 350 |
-
)
|
| 351 |
with gr.Box(elem_id="box-filter"):
|
| 352 |
filter_columns_type = gr.CheckboxGroup(
|
| 353 |
label="Model types",
|
|
@@ -366,6 +352,13 @@ with demo:
|
|
| 366 |
interactive=True,
|
| 367 |
elem_id="filter-columns-type",
|
| 368 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 369 |
filter_columns_size = gr.CheckboxGroup(
|
| 370 |
label="Model sizes",
|
| 371 |
choices=list(NUMERIC_INTERVALS.keys()),
|
|
@@ -402,55 +395,93 @@ with demo:
|
|
| 402 |
visible=False,
|
| 403 |
)
|
| 404 |
search_bar.submit(
|
| 405 |
-
|
| 406 |
[
|
| 407 |
hidden_leaderboard_table_for_search,
|
| 408 |
leaderboard_table,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 409 |
search_bar,
|
| 410 |
],
|
| 411 |
leaderboard_table,
|
| 412 |
)
|
| 413 |
shown_columns.change(
|
| 414 |
-
|
| 415 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 416 |
leaderboard_table,
|
| 417 |
-
queue=
|
| 418 |
)
|
| 419 |
filter_columns_type.change(
|
| 420 |
-
|
| 421 |
[
|
| 422 |
hidden_leaderboard_table_for_search,
|
| 423 |
leaderboard_table,
|
|
|
|
| 424 |
filter_columns_type,
|
|
|
|
| 425 |
filter_columns_size,
|
| 426 |
deleted_models_visibility,
|
|
|
|
| 427 |
],
|
| 428 |
leaderboard_table,
|
| 429 |
-
queue=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 430 |
)
|
| 431 |
filter_columns_size.change(
|
| 432 |
-
|
| 433 |
[
|
| 434 |
hidden_leaderboard_table_for_search,
|
| 435 |
leaderboard_table,
|
|
|
|
| 436 |
filter_columns_type,
|
|
|
|
| 437 |
filter_columns_size,
|
| 438 |
deleted_models_visibility,
|
|
|
|
| 439 |
],
|
| 440 |
leaderboard_table,
|
| 441 |
-
queue=
|
| 442 |
)
|
| 443 |
deleted_models_visibility.change(
|
| 444 |
-
|
| 445 |
[
|
| 446 |
hidden_leaderboard_table_for_search,
|
| 447 |
leaderboard_table,
|
|
|
|
| 448 |
filter_columns_type,
|
|
|
|
| 449 |
filter_columns_size,
|
| 450 |
deleted_models_visibility,
|
|
|
|
| 451 |
],
|
| 452 |
leaderboard_table,
|
| 453 |
-
queue=
|
| 454 |
)
|
| 455 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 456 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
|
@@ -556,20 +587,6 @@ with demo:
|
|
| 556 |
submission_result,
|
| 557 |
)
|
| 558 |
|
| 559 |
-
with gr.Row():
|
| 560 |
-
refresh_button = gr.Button("Refresh")
|
| 561 |
-
refresh_button.click(
|
| 562 |
-
refresh,
|
| 563 |
-
inputs=[],
|
| 564 |
-
outputs=[
|
| 565 |
-
leaderboard_table,
|
| 566 |
-
finished_eval_table,
|
| 567 |
-
running_eval_table,
|
| 568 |
-
pending_eval_table,
|
| 569 |
-
],
|
| 570 |
-
api_name='refresh'
|
| 571 |
-
)
|
| 572 |
-
|
| 573 |
with gr.Row():
|
| 574 |
with gr.Accordion("📙 Citation", open=False):
|
| 575 |
citation_button = gr.Textbox(
|
|
@@ -589,6 +606,6 @@ with demo:
|
|
| 589 |
)
|
| 590 |
|
| 591 |
scheduler = BackgroundScheduler()
|
| 592 |
-
scheduler.add_job(restart_space, "interval", seconds=
|
| 593 |
scheduler.start()
|
| 594 |
demo.queue(concurrency_count=40).launch()
|
|
|
|
| 222 |
|
| 223 |
|
| 224 |
# Basics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
def change_tab(query_param: str):
|
| 226 |
query_param = query_param.replace("'", '"')
|
| 227 |
query_param = json.loads(query_param)
|
|
|
|
| 233 |
|
| 234 |
|
| 235 |
# Searching and filtering
|
| 236 |
+
def update_table(hidden_df: pd.DataFrame, current_columns_df: pd.DataFrame, columns: list, type_query: list, precision_query: str, size_query: list, show_deleted: bool, query: str):
|
| 237 |
+
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
| 238 |
+
if query != "":
|
| 239 |
+
filtered_df = search_table(filtered_df, query)
|
| 240 |
+
df = select_columns(filtered_df, columns)
|
| 241 |
+
|
| 242 |
+
return df
|
|
|
|
|
|
|
|
|
|
| 243 |
|
| 244 |
+
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 245 |
+
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
| 246 |
|
| 247 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 248 |
always_here_cols = [
|
|
|
|
| 256 |
return filtered_df
|
| 257 |
|
| 258 |
NUMERIC_INTERVALS = {
|
| 259 |
+
"Unknown": pd.Interval(-1, 0, closed="right"),
|
| 260 |
+
"< 1.5B": pd.Interval(0, 1.5, closed="right"),
|
| 261 |
+
"~3B": pd.Interval(1.5, 5, closed="right"),
|
| 262 |
+
"~7B": pd.Interval(6, 11, closed="right"),
|
| 263 |
+
"~13B": pd.Interval(12, 15, closed="right"),
|
| 264 |
+
# "~35B": pd.Interval(16, 55, closed="right"),
|
| 265 |
+
# "60B+": pd.Interval(55, 10000, closed="right"),
|
| 266 |
}
|
| 267 |
|
| 268 |
def filter_models(
|
| 269 |
+
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
| 270 |
) -> pd.DataFrame:
|
|
|
|
|
|
|
| 271 |
# Show all models
|
| 272 |
if show_deleted:
|
| 273 |
+
filtered_df = df
|
| 274 |
else: # Show only still on the hub models
|
| 275 |
+
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
| 276 |
|
| 277 |
type_emoji = [t[0] for t in type_query]
|
| 278 |
filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 279 |
+
filtered_df = filtered_df[df[AutoEvalColumn.precision.name].isin(precision_query)]
|
| 280 |
|
| 281 |
+
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 282 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 283 |
+
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 284 |
+
filtered_df = filtered_df.loc[mask]
|
| 285 |
|
| 286 |
return filtered_df
|
| 287 |
|
|
|
|
| 295 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 296 |
with gr.Row():
|
| 297 |
with gr.Column():
|
| 298 |
+
with gr.Row():
|
| 299 |
+
search_bar = gr.Textbox(
|
| 300 |
+
placeholder=" 🔍 Search for your model and press ENTER...",
|
| 301 |
+
show_label=False,
|
| 302 |
+
elem_id="search-bar",
|
| 303 |
+
)
|
| 304 |
with gr.Row():
|
| 305 |
shown_columns = gr.CheckboxGroup(
|
| 306 |
choices=[
|
|
|
|
| 334 |
value=True, label="👀 Show gated/private/deleted models", interactive=True
|
| 335 |
)
|
| 336 |
with gr.Column(min_width=320):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
with gr.Box(elem_id="box-filter"):
|
| 338 |
filter_columns_type = gr.CheckboxGroup(
|
| 339 |
label="Model types",
|
|
|
|
| 352 |
interactive=True,
|
| 353 |
elem_id="filter-columns-type",
|
| 354 |
)
|
| 355 |
+
filter_columns_precision = gr.CheckboxGroup(
|
| 356 |
+
label="Precision",
|
| 357 |
+
choices=["torch.float16"], #, "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
|
| 358 |
+
value=["torch.float16"], #, "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
|
| 359 |
+
interactive=False,
|
| 360 |
+
elem_id="filter-columns-precision",
|
| 361 |
+
)
|
| 362 |
filter_columns_size = gr.CheckboxGroup(
|
| 363 |
label="Model sizes",
|
| 364 |
choices=list(NUMERIC_INTERVALS.keys()),
|
|
|
|
| 395 |
visible=False,
|
| 396 |
)
|
| 397 |
search_bar.submit(
|
| 398 |
+
update_table,
|
| 399 |
[
|
| 400 |
hidden_leaderboard_table_for_search,
|
| 401 |
leaderboard_table,
|
| 402 |
+
shown_columns,
|
| 403 |
+
filter_columns_type,
|
| 404 |
+
filter_columns_precision,
|
| 405 |
+
filter_columns_size,
|
| 406 |
+
deleted_models_visibility,
|
| 407 |
search_bar,
|
| 408 |
],
|
| 409 |
leaderboard_table,
|
| 410 |
)
|
| 411 |
shown_columns.change(
|
| 412 |
+
update_table,
|
| 413 |
+
[
|
| 414 |
+
hidden_leaderboard_table_for_search,
|
| 415 |
+
leaderboard_table,
|
| 416 |
+
shown_columns,
|
| 417 |
+
filter_columns_type,
|
| 418 |
+
filter_columns_precision,
|
| 419 |
+
filter_columns_size,
|
| 420 |
+
deleted_models_visibility,
|
| 421 |
+
search_bar,
|
| 422 |
+
],
|
| 423 |
leaderboard_table,
|
| 424 |
+
queue=True,
|
| 425 |
)
|
| 426 |
filter_columns_type.change(
|
| 427 |
+
update_table,
|
| 428 |
[
|
| 429 |
hidden_leaderboard_table_for_search,
|
| 430 |
leaderboard_table,
|
| 431 |
+
shown_columns,
|
| 432 |
filter_columns_type,
|
| 433 |
+
filter_columns_precision,
|
| 434 |
filter_columns_size,
|
| 435 |
deleted_models_visibility,
|
| 436 |
+
search_bar,
|
| 437 |
],
|
| 438 |
leaderboard_table,
|
| 439 |
+
queue=True,
|
| 440 |
+
)
|
| 441 |
+
filter_columns_precision.change(
|
| 442 |
+
update_table,
|
| 443 |
+
[
|
| 444 |
+
hidden_leaderboard_table_for_search,
|
| 445 |
+
leaderboard_table,
|
| 446 |
+
shown_columns,
|
| 447 |
+
filter_columns_type,
|
| 448 |
+
filter_columns_precision,
|
| 449 |
+
filter_columns_size,
|
| 450 |
+
deleted_models_visibility,
|
| 451 |
+
search_bar,
|
| 452 |
+
],
|
| 453 |
+
leaderboard_table,
|
| 454 |
+
queue=True,
|
| 455 |
)
|
| 456 |
filter_columns_size.change(
|
| 457 |
+
update_table,
|
| 458 |
[
|
| 459 |
hidden_leaderboard_table_for_search,
|
| 460 |
leaderboard_table,
|
| 461 |
+
shown_columns,
|
| 462 |
filter_columns_type,
|
| 463 |
+
filter_columns_precision,
|
| 464 |
filter_columns_size,
|
| 465 |
deleted_models_visibility,
|
| 466 |
+
search_bar,
|
| 467 |
],
|
| 468 |
leaderboard_table,
|
| 469 |
+
queue=True,
|
| 470 |
)
|
| 471 |
deleted_models_visibility.change(
|
| 472 |
+
update_table,
|
| 473 |
[
|
| 474 |
hidden_leaderboard_table_for_search,
|
| 475 |
leaderboard_table,
|
| 476 |
+
shown_columns,
|
| 477 |
filter_columns_type,
|
| 478 |
+
filter_columns_precision,
|
| 479 |
filter_columns_size,
|
| 480 |
deleted_models_visibility,
|
| 481 |
+
search_bar,
|
| 482 |
],
|
| 483 |
leaderboard_table,
|
| 484 |
+
queue=True,
|
| 485 |
)
|
| 486 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 487 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
|
|
|
| 587 |
submission_result,
|
| 588 |
)
|
| 589 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 590 |
with gr.Row():
|
| 591 |
with gr.Accordion("📙 Citation", open=False):
|
| 592 |
citation_button = gr.Textbox(
|
|
|
|
| 606 |
)
|
| 607 |
|
| 608 |
scheduler = BackgroundScheduler()
|
| 609 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 610 |
scheduler.start()
|
| 611 |
demo.queue(concurrency_count=40).launch()
|
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
aiofiles==23.1.0
|
| 2 |
aiohttp==3.8.4
|
| 3 |
aiosignal==1.3.1
|
|
@@ -19,8 +20,8 @@ filelock==3.11.0
|
|
| 19 |
fonttools==4.39.3
|
| 20 |
frozenlist==1.3.3
|
| 21 |
fsspec==2023.4.0
|
| 22 |
-
gradio==3.
|
| 23 |
-
|
| 24 |
h11==0.14.0
|
| 25 |
httpcore==0.17.0
|
| 26 |
httpx==0.24.0
|
|
@@ -59,7 +60,7 @@ sniffio==1.3.0
|
|
| 59 |
starlette==0.26.1
|
| 60 |
toolz==0.12.0
|
| 61 |
tqdm==4.65.0
|
| 62 |
-
transformers==4.
|
| 63 |
typing_extensions==4.5.0
|
| 64 |
tzdata==2023.3
|
| 65 |
tzlocal==4.3
|
|
|
|
| 1 |
+
accelerate==0.23.0
|
| 2 |
aiofiles==23.1.0
|
| 3 |
aiohttp==3.8.4
|
| 4 |
aiosignal==1.3.1
|
|
|
|
| 20 |
fonttools==4.39.3
|
| 21 |
frozenlist==1.3.3
|
| 22 |
fsspec==2023.4.0
|
| 23 |
+
gradio==3.43.2
|
| 24 |
+
gradio-client==0.5.0
|
| 25 |
h11==0.14.0
|
| 26 |
httpcore==0.17.0
|
| 27 |
httpx==0.24.0
|
|
|
|
| 60 |
starlette==0.26.1
|
| 61 |
toolz==0.12.0
|
| 62 |
tqdm==4.65.0
|
| 63 |
+
transformers==4.33.1
|
| 64 |
typing_extensions==4.5.0
|
| 65 |
tzdata==2023.3
|
| 66 |
tzlocal==4.3
|
src/display_models/get_model_metadata.py
CHANGED
|
@@ -2,11 +2,14 @@ import glob
|
|
| 2 |
import json
|
| 3 |
import os
|
| 4 |
import re
|
|
|
|
| 5 |
from typing import List
|
| 6 |
|
| 7 |
import huggingface_hub
|
| 8 |
from huggingface_hub import HfApi
|
| 9 |
from tqdm import tqdm
|
|
|
|
|
|
|
| 10 |
|
| 11 |
from src.display_models.model_metadata_flags import DO_NOT_SUBMIT_MODELS, FLAGGED_MODELS
|
| 12 |
from src.display_models.model_metadata_type import MODEL_TYPE_METADATA, ModelType, model_type_from_str
|
|
@@ -16,27 +19,53 @@ api = HfApi(token=os.environ.get("H4_TOKEN", None))
|
|
| 16 |
|
| 17 |
|
| 18 |
def get_model_infos_from_hub(leaderboard_data: List[dict]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
for model_data in tqdm(leaderboard_data):
|
| 20 |
model_name = model_data["model_name_for_query"]
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
model_data[AutoEvalColumn.license.name] = get_model_license(model_info)
|
| 31 |
model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info)
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
|
| 35 |
def get_model_license(model_info):
|
| 36 |
try:
|
| 37 |
return model_info.cardData["license"]
|
| 38 |
except Exception:
|
| 39 |
-
return
|
| 40 |
|
| 41 |
|
| 42 |
def get_model_likes(model_info):
|
|
@@ -52,11 +81,17 @@ def get_model_size(model_name, model_info):
|
|
| 52 |
return round(model_info.safetensors["total"] / 1e9, 3)
|
| 53 |
except AttributeError:
|
| 54 |
try:
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
|
| 62 |
def get_model_type(leaderboard_data: List[dict]):
|
|
|
|
| 2 |
import json
|
| 3 |
import os
|
| 4 |
import re
|
| 5 |
+
import pickle
|
| 6 |
from typing import List
|
| 7 |
|
| 8 |
import huggingface_hub
|
| 9 |
from huggingface_hub import HfApi
|
| 10 |
from tqdm import tqdm
|
| 11 |
+
from transformers import AutoModel, AutoConfig
|
| 12 |
+
from accelerate import init_empty_weights
|
| 13 |
|
| 14 |
from src.display_models.model_metadata_flags import DO_NOT_SUBMIT_MODELS, FLAGGED_MODELS
|
| 15 |
from src.display_models.model_metadata_type import MODEL_TYPE_METADATA, ModelType, model_type_from_str
|
|
|
|
| 19 |
|
| 20 |
|
| 21 |
def get_model_infos_from_hub(leaderboard_data: List[dict]):
|
| 22 |
+
# load cache from disk
|
| 23 |
+
try:
|
| 24 |
+
with open("model_info_cache.pkl", "rb") as f:
|
| 25 |
+
model_info_cache = pickle.load(f)
|
| 26 |
+
except (EOFError, FileNotFoundError):
|
| 27 |
+
model_info_cache = {}
|
| 28 |
+
try:
|
| 29 |
+
with open("model_size_cache.pkl", "rb") as f:
|
| 30 |
+
model_size_cache = pickle.load(f)
|
| 31 |
+
except (EOFError, FileNotFoundError):
|
| 32 |
+
model_size_cache = {}
|
| 33 |
+
|
| 34 |
for model_data in tqdm(leaderboard_data):
|
| 35 |
model_name = model_data["model_name_for_query"]
|
| 36 |
+
|
| 37 |
+
if model_name in model_info_cache:
|
| 38 |
+
model_info = model_info_cache[model_name]
|
| 39 |
+
else:
|
| 40 |
+
try:
|
| 41 |
+
model_info = api.model_info(model_name)
|
| 42 |
+
model_info_cache[model_name] = model_info
|
| 43 |
+
except huggingface_hub.utils._errors.RepositoryNotFoundError:
|
| 44 |
+
print("Repo not found!", model_name)
|
| 45 |
+
model_data[AutoEvalColumn.license.name] = None
|
| 46 |
+
model_data[AutoEvalColumn.likes.name] = None
|
| 47 |
+
if model_name not in model_size_cache:
|
| 48 |
+
model_size_cache[model_name] = get_model_size(model_name, None)
|
| 49 |
+
model_data[AutoEvalColumn.params.name] = model_size_cache[model_name]
|
| 50 |
|
| 51 |
model_data[AutoEvalColumn.license.name] = get_model_license(model_info)
|
| 52 |
model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info)
|
| 53 |
+
if model_name not in model_size_cache:
|
| 54 |
+
model_size_cache[model_name] = get_model_size(model_name, model_info)
|
| 55 |
+
model_data[AutoEvalColumn.params.name] = model_size_cache[model_name]
|
| 56 |
+
|
| 57 |
+
# save cache to disk in pickle format
|
| 58 |
+
with open("model_info_cache.pkl", "wb") as f:
|
| 59 |
+
pickle.dump(model_info_cache, f)
|
| 60 |
+
with open("model_size_cache.pkl", "wb") as f:
|
| 61 |
+
pickle.dump(model_size_cache, f)
|
| 62 |
|
| 63 |
|
| 64 |
def get_model_license(model_info):
|
| 65 |
try:
|
| 66 |
return model_info.cardData["license"]
|
| 67 |
except Exception:
|
| 68 |
+
return "?"
|
| 69 |
|
| 70 |
|
| 71 |
def get_model_likes(model_info):
|
|
|
|
| 81 |
return round(model_info.safetensors["total"] / 1e9, 3)
|
| 82 |
except AttributeError:
|
| 83 |
try:
|
| 84 |
+
config = AutoConfig.from_pretrained(model_name, trust_remote_code=False)
|
| 85 |
+
with init_empty_weights():
|
| 86 |
+
model = AutoModel.from_config(config, trust_remote_code=False)
|
| 87 |
+
return round(sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e9, 3)
|
| 88 |
+
except (EnvironmentError, ValueError): # model config not found, likely private
|
| 89 |
+
try:
|
| 90 |
+
size_match = re.search(size_pattern, model_name.lower())
|
| 91 |
+
size = size_match.group(0)
|
| 92 |
+
return round(float(size[:-1]) if size[-1] == "b" else float(size[:-1]) / 1e3, 3)
|
| 93 |
+
except AttributeError:
|
| 94 |
+
return 0
|
| 95 |
|
| 96 |
|
| 97 |
def get_model_type(leaderboard_data: List[dict]):
|
src/display_models/model_metadata_flags.py
CHANGED
|
@@ -1,15 +1,8 @@
|
|
| 1 |
# Models which have been flagged by users as being problematic for a reason or another
|
| 2 |
# (Model name to forum discussion link)
|
| 3 |
FLAGGED_MODELS = {
|
| 4 |
-
"Voicelab/trurl-2-13b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/202",
|
| 5 |
-
"deepnight-research/llama-2-70B-inst": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/207",
|
| 6 |
-
"Aspik101/trurl-2-13b-pl-instruct_unload": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/213",
|
| 7 |
-
"Fredithefish/ReasonixPajama-3B-HF": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/236",
|
| 8 |
-
"TigerResearch/tigerbot-7b-sft-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/237",
|
| 9 |
-
"gaodrew/gaodrew-gorgonzola-13b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/215",
|
| 10 |
}
|
| 11 |
|
| 12 |
# Models which have been requested by orgs to not be submitted on the leaderboard
|
| 13 |
DO_NOT_SUBMIT_MODELS = [
|
| 14 |
-
"Voicelab/trurl-2-13b", # trained on MMLU
|
| 15 |
]
|
|
|
|
| 1 |
# Models which have been flagged by users as being problematic for a reason or another
|
| 2 |
# (Model name to forum discussion link)
|
| 3 |
FLAGGED_MODELS = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
}
|
| 5 |
|
| 6 |
# Models which have been requested by orgs to not be submitted on the leaderboard
|
| 7 |
DO_NOT_SUBMIT_MODELS = [
|
|
|
|
| 8 |
]
|
src/display_models/read_results.py
CHANGED
|
@@ -87,11 +87,11 @@ def parse_eval_result(json_filepath: str) -> Tuple[str, list[dict]]:
|
|
| 87 |
if len(model_split) == 1:
|
| 88 |
org = None
|
| 89 |
model = model_split[0]
|
| 90 |
-
result_key = f"{model}_{
|
| 91 |
else:
|
| 92 |
org = model_split[0]
|
| 93 |
model = model_split[1]
|
| 94 |
-
result_key = f"{org}_{model}_{
|
| 95 |
|
| 96 |
eval_results = []
|
| 97 |
for benchmark, metric in zip(BENCHMARKS, METRICS):
|
|
|
|
| 87 |
if len(model_split) == 1:
|
| 88 |
org = None
|
| 89 |
model = model_split[0]
|
| 90 |
+
result_key = f"{model}_{precision}"
|
| 91 |
else:
|
| 92 |
org = model_split[0]
|
| 93 |
model = model_split[1]
|
| 94 |
+
result_key = f"{org}_{model}_{precision}"
|
| 95 |
|
| 96 |
eval_results = []
|
| 97 |
for benchmark, metric in zip(BENCHMARKS, METRICS):
|
src/load_from_hub.py
CHANGED
|
@@ -80,11 +80,8 @@ def get_leaderboard_df(
|
|
| 80 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 81 |
df = df[cols].round(decimals=2)
|
| 82 |
|
| 83 |
-
|
| 84 |
# filter out if any of the benchmarks have not been produced
|
| 85 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
| 86 |
-
|
| 87 |
-
print(df)
|
| 88 |
return df
|
| 89 |
|
| 90 |
|
|
@@ -125,7 +122,7 @@ def get_evaluation_queue_df(
|
|
| 125 |
|
| 126 |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
| 127 |
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
| 128 |
-
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED")]
|
| 129 |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
| 130 |
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
| 131 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
|
|
|
| 80 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 81 |
df = df[cols].round(decimals=2)
|
| 82 |
|
|
|
|
| 83 |
# filter out if any of the benchmarks have not been produced
|
| 84 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
|
|
|
|
|
|
| 85 |
return df
|
| 86 |
|
| 87 |
|
|
|
|
| 122 |
|
| 123 |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
| 124 |
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
| 125 |
+
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
| 126 |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
| 127 |
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
| 128 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|