Update app.py
Browse files
app.py
CHANGED
@@ -3,18 +3,20 @@ import arxiv
|
|
3 |
import requests
|
4 |
import os
|
5 |
from pathlib import Path
|
6 |
-
from transformers import pipeline,
|
7 |
from huggingface_hub import login, HfApi
|
8 |
import fitz # PyMuPDF
|
9 |
import pandas as pd
|
10 |
from collections import Counter
|
11 |
import re
|
|
|
12 |
|
13 |
# Constants
|
14 |
-
MODEL_NAME = "
|
15 |
-
SECONDARY_MODEL = "
|
16 |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN", "your_username/<name>")
|
17 |
SPACE_NAME = f"unpaper/<name>" if not HUGGINGFACE_TOKEN.startswith("your_username") else f"your_username/<name>"
|
|
|
18 |
|
19 |
# CSS
|
20 |
st.markdown("""
|
@@ -28,6 +30,13 @@ st.markdown("""
|
|
28 |
border-radius: 5px;
|
29 |
display: inline-block;
|
30 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
</style>
|
32 |
""", unsafe_allow_html=True)
|
33 |
|
@@ -38,20 +47,42 @@ arxiv_id = st.sidebar.text_input("Enter arXiv ID", "2407.21783")
|
|
38 |
upload_pdf = st.sidebar.file_uploader("Upload PDF", type="pdf")
|
39 |
space_name = st.sidebar.text_input("Hugging Face Space Name", SPACE_NAME)
|
40 |
token = st.sidebar.text_input("Hugging Face Token", HUGGINGFACE_TOKEN, type="password")
|
|
|
41 |
|
42 |
# Login to Hugging Face
|
43 |
if token:
|
44 |
login(token=token)
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
# Initialize models
|
47 |
@st.cache_resource
|
48 |
def load_models():
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
tokenizer, model,
|
55 |
|
56 |
# Functions
|
57 |
def fetch_arxiv_paper(paper_id):
|
@@ -80,27 +111,53 @@ def analyze_authors(text):
|
|
80 |
author_list.extend([name.strip() for name in names])
|
81 |
return Counter(author_list)
|
82 |
|
83 |
-
def
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
88 |
|
89 |
def create_huggingface_space(space_name, metadata):
|
90 |
api = HfApi()
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
# Main App
|
101 |
st.title("arXiv Paper to Hugging Face Space Converter")
|
102 |
st.markdown("<div class='badge'>Beta Community - Open Discussion in Community Tab</div>", unsafe_allow_html=True)
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
# Process arXiv or PDF
|
105 |
if arxiv_id or upload_pdf:
|
106 |
if upload_pdf:
|
@@ -114,7 +171,10 @@ if arxiv_id or upload_pdf:
|
|
114 |
# Extract and analyze
|
115 |
text = extract_text_from_pdf(pdf_path)
|
116 |
author_analysis = analyze_authors(text)
|
117 |
-
|
|
|
|
|
|
|
118 |
|
119 |
# Display results
|
120 |
st.header("Paper Analysis")
|
@@ -122,30 +182,40 @@ if arxiv_id or upload_pdf:
|
|
122 |
st.dataframe(pd.DataFrame.from_dict(author_analysis, orient='index', columns=['Count']))
|
123 |
|
124 |
st.subheader("AI Analysis")
|
125 |
-
st.write("
|
126 |
-
st.write("
|
127 |
|
128 |
-
#
|
129 |
metadata = {
|
130 |
"title": paper.title if arxiv_id else "Uploaded PDF",
|
131 |
"authors": list(author_analysis.keys()),
|
132 |
"arxiv_id": arxiv_id if arxiv_id else "N/A",
|
133 |
"model_analysis": {
|
134 |
-
"
|
135 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
}
|
137 |
}
|
138 |
|
139 |
# Create Space
|
140 |
if st.button("Create Hugging Face Space"):
|
141 |
space_url = create_huggingface_space(space_name, metadata)
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
<
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
149 |
|
150 |
# Cleanup
|
151 |
if os.path.exists("temp.pdf"):
|
|
|
3 |
import requests
|
4 |
import os
|
5 |
from pathlib import Path
|
6 |
+
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
|
7 |
from huggingface_hub import login, HfApi
|
8 |
import fitz # PyMuPDF
|
9 |
import pandas as pd
|
10 |
from collections import Counter
|
11 |
import re
|
12 |
+
import json
|
13 |
|
14 |
# Constants
|
15 |
+
MODEL_NAME = "google/flan-t5-large"
|
16 |
+
SECONDARY_MODEL = "facebook/bart-large-cnn"
|
17 |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN", "your_username/<name>")
|
18 |
SPACE_NAME = f"unpaper/<name>" if not HUGGINGFACE_TOKEN.startswith("your_username") else f"your_username/<name>"
|
19 |
+
HF_API_URL = "https://huggingface.co/api/models"
|
20 |
|
21 |
# CSS
|
22 |
st.markdown("""
|
|
|
30 |
border-radius: 5px;
|
31 |
display: inline-block;
|
32 |
}
|
33 |
+
.warning {
|
34 |
+
background-color: #fff3cd;
|
35 |
+
color: #856404;
|
36 |
+
padding: 10px;
|
37 |
+
border-radius: 5px;
|
38 |
+
margin: 10px 0;
|
39 |
+
}
|
40 |
</style>
|
41 |
""", unsafe_allow_html=True)
|
42 |
|
|
|
47 |
upload_pdf = st.sidebar.file_uploader("Upload PDF", type="pdf")
|
48 |
space_name = st.sidebar.text_input("Hugging Face Space Name", SPACE_NAME)
|
49 |
token = st.sidebar.text_input("Hugging Face Token", HUGGINGFACE_TOKEN, type="password")
|
50 |
+
model_choice = st.sidebar.selectbox("Select Model", ["Text-to-Text (FLAN-T5)", "Text Generation (BART)"])
|
51 |
|
52 |
# Login to Hugging Face
|
53 |
if token:
|
54 |
login(token=token)
|
55 |
|
56 |
+
# Fetch available models from Hugging Face API
|
57 |
+
@st.cache_data(ttl=3600)
|
58 |
+
def fetch_hf_models():
|
59 |
+
try:
|
60 |
+
response = requests.get(HF_API_URL, headers={"Authorization": f"Bearer {token}"})
|
61 |
+
if response.status_code == 200:
|
62 |
+
return response.json()
|
63 |
+
else:
|
64 |
+
st.warning("Failed to fetch models from Hugging Face API. Using default models.")
|
65 |
+
return None
|
66 |
+
except Exception as e:
|
67 |
+
st.warning(f"Error fetching models: {str(e)}. Using default models.")
|
68 |
+
return None
|
69 |
+
|
70 |
+
hf_models = fetch_hf_models()
|
71 |
+
|
72 |
# Initialize models
|
73 |
@st.cache_resource
|
74 |
def load_models():
|
75 |
+
if model_choice == "Text-to-Text (FLAN-T5)":
|
76 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
77 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
78 |
+
pipeline_model = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
|
79 |
+
else:
|
80 |
+
tokenizer = AutoTokenizer.from_pretrained(SECONDARY_MODEL)
|
81 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(SECONDARY_MODEL)
|
82 |
+
pipeline_model = pipeline("summarization", model=model, tokenizer=tokenizer)
|
83 |
+
return tokenizer, model, pipeline_model
|
84 |
|
85 |
+
tokenizer, model, pipeline_model = load_models()
|
86 |
|
87 |
# Functions
|
88 |
def fetch_arxiv_paper(paper_id):
|
|
|
111 |
author_list.extend([name.strip() for name in names])
|
112 |
return Counter(author_list)
|
113 |
|
114 |
+
def process_text_with_model(text, task="summarize"):
|
115 |
+
if model_choice == "Text-to-Text (FLAN-T5)":
|
116 |
+
prompt = f"{task} the following text: {text[:1000]}"
|
117 |
+
result = pipeline_model(prompt, max_length=512, num_beams=4)
|
118 |
+
else:
|
119 |
+
result = pipeline_model(text[:1000], max_length=512, min_length=30, do_sample=False)
|
120 |
+
return result[0]['generated_text']
|
121 |
|
122 |
def create_huggingface_space(space_name, metadata):
|
123 |
api = HfApi()
|
124 |
+
try:
|
125 |
+
api.create_repo(repo_id=space_name, repo_type="space", space_sdk="static", private=False)
|
126 |
+
# Upload metadata
|
127 |
+
with open("metadata.json", "w") as f:
|
128 |
+
json.dump(metadata, f, indent=2)
|
129 |
+
api.upload_file(
|
130 |
+
path_or_fileobj="metadata.json",
|
131 |
+
path_in_repo="metadata.json",
|
132 |
+
repo_id=space_name,
|
133 |
+
repo_type="space"
|
134 |
+
)
|
135 |
+
api.upload_file(
|
136 |
+
path_or_fileobj="README.md",
|
137 |
+
path_in_repo="README.md",
|
138 |
+
repo_id=space_name,
|
139 |
+
repo_type="space"
|
140 |
+
)
|
141 |
+
return f"https://huggingface.co/spaces/{space_name}"
|
142 |
+
except Exception as e:
|
143 |
+
st.error(f"Failed to create space: {str(e)}")
|
144 |
+
return None
|
145 |
+
finally:
|
146 |
+
if os.path.exists("metadata.json"):
|
147 |
+
os.remove("metadata.json")
|
148 |
|
149 |
# Main App
|
150 |
st.title("arXiv Paper to Hugging Face Space Converter")
|
151 |
st.markdown("<div class='badge'>Beta Community - Open Discussion in Community Tab</div>", unsafe_allow_html=True)
|
152 |
|
153 |
+
# Warning about model usage
|
154 |
+
st.markdown("""
|
155 |
+
<div class='warning'>
|
156 |
+
<strong>Warning:</strong> Ensure you have proper permissions to use selected models.
|
157 |
+
Model outputs are stored in metadata and will be publicly visible in the space.
|
158 |
+
</div>
|
159 |
+
""", unsafe_allow_html=True)
|
160 |
+
|
161 |
# Process arXiv or PDF
|
162 |
if arxiv_id or upload_pdf:
|
163 |
if upload_pdf:
|
|
|
171 |
# Extract and analyze
|
172 |
text = extract_text_from_pdf(pdf_path)
|
173 |
author_analysis = analyze_authors(text)
|
174 |
+
|
175 |
+
# Model processing
|
176 |
+
summary = process_text_with_model(text, "summarize")
|
177 |
+
key_points = process_text_with_model(text, "extract key points" if model_choice == "Text-to-Text (FLAN-T5)" else "summarize")
|
178 |
|
179 |
# Display results
|
180 |
st.header("Paper Analysis")
|
|
|
182 |
st.dataframe(pd.DataFrame.from_dict(author_analysis, orient='index', columns=['Count']))
|
183 |
|
184 |
st.subheader("AI Analysis")
|
185 |
+
st.write("Summary:", summary)
|
186 |
+
st.write("Key Points:", key_points)
|
187 |
|
188 |
+
# Enhanced metadata
|
189 |
metadata = {
|
190 |
"title": paper.title if arxiv_id else "Uploaded PDF",
|
191 |
"authors": list(author_analysis.keys()),
|
192 |
"arxiv_id": arxiv_id if arxiv_id else "N/A",
|
193 |
"model_analysis": {
|
194 |
+
"summary": summary,
|
195 |
+
"key_points": key_points,
|
196 |
+
"model_used": model_choice,
|
197 |
+
"model_name": MODEL_NAME if model_choice == "Text-to-Text (FLAN-T5)" else SECONDARY_MODEL,
|
198 |
+
"model_license": "Check model card on Hugging Face",
|
199 |
+
"processing_date": pd.Timestamp.now().isoformat()
|
200 |
+
},
|
201 |
+
"warnings": {
|
202 |
+
"model_usage": "Ensure proper model licensing",
|
203 |
+
"content_visibility": "All outputs will be public in space",
|
204 |
+
"data_source": "Verify arXiv/paper permissions"
|
205 |
}
|
206 |
}
|
207 |
|
208 |
# Create Space
|
209 |
if st.button("Create Hugging Face Space"):
|
210 |
space_url = create_huggingface_space(space_name, metadata)
|
211 |
+
if space_url:
|
212 |
+
st.success(f"Space created: {space_url}")
|
213 |
+
st.markdown(f"""
|
214 |
+
<a href="{space_url}" target="_blank">
|
215 |
+
<img src="https://huggingface.co/front/assets/huggingface_logo-noborder.svg"
|
216 |
+
alt="Hugging Face Space" width="150">
|
217 |
+
</a>
|
218 |
+
""", unsafe_allow_html=True)
|
219 |
|
220 |
# Cleanup
|
221 |
if os.path.exists("temp.pdf"):
|