File size: 4,038 Bytes
a3effe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import json

import gradio as gr
from huggingface_hub import snapshot_download
from omegaconf import OmegaConf
from vosk import KaldiRecognizer, Model


def load_vosk(model_id: str):
    model_dir = snapshot_download(model_id)
    return Model(model_path=model_dir)


OmegaConf.register_new_resolver("load_vosk", load_vosk)

models_config = OmegaConf.to_object(OmegaConf.load("configs/models.yaml"))


def automatic_speech_recognition(
    model_id: str, dialect_id: str, stream: str, new_chunk: str
):
    if isinstance(models_config[model_id]["model"], dict):
        model = models_config[model_id]["model"][dialect_id]
    else:
        model = models_config[model_id]["model"]

    sample_rate, audio_array = new_chunk
    if audio_array.ndim == 2:
        audio_array = audio_array[:, 0]

    audio_bytes = audio_array.tobytes()

    if stream is None:
        rec = KaldiRecognizer(model, sample_rate)
        rec.SetWords(True)
        result = []
    else:
        rec, result = stream

    if rec.AcceptWaveform(audio_bytes):
        text_result = json.loads(rec.Result())["text"]
        if text_result != "":
            result.append(text_result)
        partial_result = ""
    else:
        partial_result = json.loads(rec.PartialResult())["partial"] + " "

    if len(result) > 0:
        output_text = ",".join(result) + "," + partial_result
    else:
        output_text = partial_result

    return (rec, result), output_text


def when_model_selected(model_id: str):
    model_config = models_config[model_id]

    if "dialect_mapping" not in model_config:
        return gr.update(visible=False)

    dialect_drop_down_choices = [
        (k, v) for k, v in model_config["dialect_mapping"].items()
    ]

    return gr.update(
        choices=dialect_drop_down_choices,
        value=dialect_drop_down_choices[0][1],
        visible=True,
    )


demo = gr.Blocks(
    title="臺灣客語語音辨識系統",
    css="@import url(https://tauhu.tw/tauhu-oo.css);",
    theme=gr.themes.Default(
        font=(
            "tauhu-oo",
            gr.themes.GoogleFont("Source Sans Pro"),
            "ui-sans-serif",
            "system-ui",
            "sans-serif",
        )
    ),
)

with demo:
    default_model_id = list(models_config.keys())[0]
    model_drop_down = gr.Dropdown(
        models_config.keys(),
        value=default_model_id,
        label="模型",
    )

    dialect_drop_down = gr.Dropdown(
        choices=[
            (k, v)
            for k, v in models_config[default_model_id]["dialect_mapping"].items()
        ],
        value=list(models_config[default_model_id]["dialect_mapping"].values())[0],
        label="腔調",
    )

    model_drop_down.input(
        when_model_selected,
        inputs=[model_drop_down],
        outputs=[dialect_drop_down],
    )

    gr.Markdown(
        """
        # 臺灣客語語音辨識系統
        ### Taiwanese Hakka Automatic-Speech-Recognition System
        ### 研發
        - **[李鴻欣 Hung-Shin Lee](mailto:[email protected])([聯和科創](https://www.104.com.tw/company/1a2x6bmu75))**
        - **[陳力瑋 Li-Wei Chen](mailto:[email protected])([聯和科創](https://www.104.com.tw/company/1a2x6bmu75))**
        ### 合作單位
        - **[國立聯合大學智慧客家實驗室](https://www.gohakka.org)**
        """
    )
    state = gr.State()
    audio = gr.Audio(
        label="錄音",
        type="numpy",
        format="wav",
        waveform_options=gr.WaveformOptions(
            sample_rate=16000,
        ),
        sources=["microphone"],
        streaming=True,
    )
    gr.Interface(
        automatic_speech_recognition,
        inputs=[
            model_drop_down,
            dialect_drop_down,
            state,
            audio,
        ],
        outputs=[
            state,
            gr.Text(interactive=False, label="客語漢字"),
        ],
        live=True,
        stream_every=0.25,
        clear_btn=None,
        # flagging_mode="auto",
    )


demo.launch()