formosan-f5-tts / app.py
txya900619's picture
feat: add app.py
0c074b9
raw
history blame
8.11 kB
import tempfile
import gradio as gr
import soundfile as sf
import torchaudio
from cached_path import cached_path
from omegaconf import OmegaConf
from ipa.ipa import text_to_ipa
try:
import spaces
USING_SPACES = True
except ImportError:
USING_SPACES = False
from f5_tts.infer.utils_infer import (
infer_process,
load_model,
load_vocoder,
preprocess_ref_audio_text,
remove_silence_for_generated_wav,
save_spectrogram,
)
from f5_tts.model import DiT
def gpu_decorator(func):
if USING_SPACES:
return spaces.GPU(func)
else:
return func
vocoder = load_vocoder()
def load_f5tts(ckpt_path, vocab_path):
ckpt_path = str(cached_path(ckpt_path))
F5TTS_model_cfg = dict(
dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4
)
vocab_path = str(cached_path(vocab_path))
return load_model(DiT, F5TTS_model_cfg, ckpt_path, vocab_file=vocab_path)
OmegaConf.register_new_resolver("load_f5tts", load_f5tts)
models_config = OmegaConf.to_object(OmegaConf.load("configs/models.yaml"))
dialects = OmegaConf.to_object(OmegaConf.load("configs/dialects.yaml"))
DEFAULT_MODEL_ID = list(models_config.keys())[0]
DEFAULT_DIALECT = list(dialects.values())[0]
@gpu_decorator
def infer(
ref_audio_orig,
ref_text,
gen_text,
model,
remove_silence,
cross_fade_duration=0.15,
nfe_step=32,
fix_duration=1,
show_info=gr.Info,
):
if not ref_audio_orig:
gr.Warning("Please provide reference audio.")
return gr.update(), gr.update(), ref_text
if not gen_text.strip():
gr.Warning("Please enter text to generate.")
return gr.update(), gr.update(), ref_text
ref_audio, ref_text = preprocess_ref_audio_text(
ref_audio_orig, ref_text, show_info=show_info
)
final_wave, final_sample_rate, combined_spectrogram = infer_process(
ref_audio,
ref_text,
gen_text,
model,
vocoder,
cross_fade_duration=cross_fade_duration,
nfe_step=nfe_step,
fix_duration=fix_duration,
show_info=show_info,
progress=gr.Progress(),
)
# Remove silence
if remove_silence:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
sf.write(f.name, final_wave, final_sample_rate)
remove_silence_for_generated_wav(f.name)
final_wave, _ = torchaudio.load(f.name)
final_wave = final_wave.squeeze().cpu().numpy()
print(f"Final wave duration: {final_wave.shape[0] / final_sample_rate:.2f}s")
# Save the spectrogram
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
spectrogram_path = tmp_spectrogram.name
save_spectrogram(combined_spectrogram, spectrogram_path)
return (final_sample_rate, final_wave), spectrogram_path
def get_title():
with open("DEMO.md") as tong:
return tong.readline().strip("# ")
demo = gr.Blocks(
title=get_title(),
css="@import url(https://tauhu.tw/tauhu-oo.css);",
theme=gr.themes.Default(
font=(
"tauhu-oo",
gr.themes.GoogleFont("Source Sans Pro"),
"ui-sans-serif",
"system-ui",
"sans-serif",
)
),
)
with demo:
with open("DEMO.md") as tong:
gr.Markdown(tong.read())
with gr.Row():
with gr.Column():
model_drop_down = gr.Dropdown(
models_config.keys(),
value=DEFAULT_MODEL_ID,
label="模型",
)
ref_audio_input = gr.Audio(
type="filepath",
waveform_options=gr.WaveformOptions(
sample_rate=24000,
),
label="Reference Audio",
)
ref_text_input = gr.Textbox(
value="",
label="Reference Text",
)
gen_text_input = gr.Textbox(
label="Text to Generate",
value="",
)
generate_btn = gr.Button("Synthesize", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
remove_silence = gr.Checkbox(
label="Remove Silences",
info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.",
value=False,
)
speed_slider = gr.Slider(
label="Speed",
minimum=0.3,
maximum=2.0,
value=1.0,
step=0.1,
info="語速(越小越慢)",
)
nfe_slider = gr.Slider(
label="NFE Steps",
minimum=4,
maximum=64,
value=32,
step=2,
info="Set the number of denoising steps.",
)
cross_fade_duration_slider = gr.Slider(
label="Cross-Fade Duration (s)",
minimum=0.0,
maximum=1.0,
value=0.15,
step=0.01,
info="Set the duration of the cross-fade between audio clips.",
)
with gr.Column():
audio_output = gr.Audio(label="Synthesized Audio")
spectrogram_output = gr.Image(label="Spectrogram")
@gpu_decorator
def basic_tts(
model_drop_down: str,
ref_audio_input: str,
ref_text_input: str,
gen_text_input: str,
remove_silence: bool,
cross_fade_duration_slider: float,
nfe_slider: int,
speed_slider: float,
):
ref_audio_info = torchaudio.info(ref_audio_input)
ref_duration = ref_audio_info.num_frames / ref_audio_info.sample_rate
target_duration = (
ref_duration
* len(gen_text_input.replace(" ", ""))
/ len(ref_text_input.replace(" ", ""))
/ speed_slider
)
print(f"Reference duration: {ref_duration}")
print(f"Target duration: {target_duration}")
if len(ref_text_input) == 0:
raise gr.Error("請勿輸入空字串。")
ref_text_input = text_to_ipa(ref_text_input)
if len(gen_text_input) == 0:
raise gr.Error("請勿輸入空字串。")
gen_text_input = text_to_ipa(gen_text_input)
audio_out, spectrogram_path = infer(
ref_audio_input,
ref_text_input,
gen_text_input,
models_config[model_drop_down],
remove_silence,
cross_fade_duration=cross_fade_duration_slider,
nfe_step=nfe_slider,
fix_duration=ref_duration + target_duration,
)
return audio_out, spectrogram_path
generate_btn.click(
basic_tts,
inputs=[
model_drop_down,
ref_audio_input,
ref_text_input,
gen_text_input,
remove_silence,
cross_fade_duration_slider,
nfe_slider,
speed_slider,
],
outputs=[audio_output, spectrogram_output],
)
gr.Examples(
[
[
"./ref_wav/E-PV001-0085.wav",
"romakat kako a talapicodadan to romi’ami’ad",
"Mafana’ kiso a misanoPangcah haw?",
],
[
"./ref_wav/E-PV001-0254.wav",
"kering sa masoni^ to ko pipahanhanan a tatokian o fe:soc no niyam a tayra i piondoan",
"Pafelien cingra to misapoeneray a faloco', nanay mada'oc matilid i faloco' nira konini.",
],
],
label="範例",
inputs=[
ref_audio_input,
ref_text_input,
gen_text_input,
],
)
demo.launch()