Spaces:
Sleeping
Sleeping
unfinity
commited on
Commit
·
6fda8a4
1
Parent(s):
4ca2511
app
Browse files- Dockerfile +2 -0
- main.py +48 -2
Dockerfile
CHANGED
|
@@ -6,6 +6,8 @@ RUN pip install ultralytics
|
|
| 6 |
RUN pip install opencv-python==4.6.0.66
|
| 7 |
RUN pip install Pillow==10.3.0
|
| 8 |
RUN pip install uvicorn fastapi
|
|
|
|
|
|
|
| 9 |
|
| 10 |
COPY . .
|
| 11 |
|
|
|
|
| 6 |
RUN pip install opencv-python==4.6.0.66
|
| 7 |
RUN pip install Pillow==10.3.0
|
| 8 |
RUN pip install uvicorn fastapi
|
| 9 |
+
RUN apt update && apt install fonts-dejavu -y
|
| 10 |
+
RUN wget https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-pose.pt -O /app/yolov8l-pose.pt
|
| 11 |
|
| 12 |
COPY . .
|
| 13 |
|
main.py
CHANGED
|
@@ -10,8 +10,54 @@ import utils
|
|
| 10 |
from drawing import draw_keypoints
|
| 11 |
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
app = FastAPI()
|
| 14 |
|
|
|
|
| 15 |
@app.get("/")
|
| 16 |
-
def
|
| 17 |
-
return {"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
from drawing import draw_keypoints
|
| 11 |
|
| 12 |
|
| 13 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 14 |
+
print('Using device:', device)
|
| 15 |
+
|
| 16 |
+
model_pose = YOLO('yolov8l-pose.pt')
|
| 17 |
+
model_pose.to(device)
|
| 18 |
+
|
| 19 |
app = FastAPI()
|
| 20 |
|
| 21 |
+
|
| 22 |
@app.get("/")
|
| 23 |
+
async def health():
|
| 24 |
+
return JSONResponse(content={"status": "ok"})
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
@app.post("/predict-image")
|
| 28 |
+
async def predict_image(file: UploadFile = File(...)):
|
| 29 |
+
contents = await file.read()
|
| 30 |
+
input_image = Image.open(io.BytesIO(contents)).convert("RGB")
|
| 31 |
+
input_image = ImageOps.exif_transpose(input_image)
|
| 32 |
+
|
| 33 |
+
# predict
|
| 34 |
+
result = model_pose(input_image)[0]
|
| 35 |
+
keypoints = utils.get_keypoints(result)
|
| 36 |
+
|
| 37 |
+
# draw keypoints
|
| 38 |
+
output_image = draw_keypoints(input_image, keypoints).convert("RGB")
|
| 39 |
+
|
| 40 |
+
# calculate angles
|
| 41 |
+
lea, rea = utils.get_eye_angles(keypoints)
|
| 42 |
+
lba, rba = utils.get_elbow_angles(keypoints)
|
| 43 |
+
angles = {'left_eye_angle': lea, 'right_eye_angle': rea, 'left_elbow_angle': lba, 'right_elbow_angle': rba}
|
| 44 |
+
|
| 45 |
+
# encode to base64
|
| 46 |
+
img_buffer = io.BytesIO()
|
| 47 |
+
output_image.save(img_buffer, format="JPEG")
|
| 48 |
+
img_buffer.seek(0)
|
| 49 |
+
img_base64 = base64.b64encode(img_buffer.getvalue()).decode("utf-8")
|
| 50 |
+
|
| 51 |
+
# prepare json response
|
| 52 |
+
json_data = {
|
| 53 |
+
"keypoints": keypoints,
|
| 54 |
+
"angles": angles,
|
| 55 |
+
"output_image": img_base64
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
return JSONResponse(content=json_data)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
# if __name__ == "__main__":
|
| 62 |
+
# import uvicorn
|
| 63 |
+
# uvicorn.run(app, host="0.0.0.0", port=7860)
|