Spaces:
Running
Running
| import streamlit as st | |
| from PIL import Image | |
| from ultralytics import YOLO | |
| import torch | |
| import utils | |
| import utils | |
| from drawing import draw_keypoints | |
| def load_model(): | |
| print('Loading model...') | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| model_pose = YOLO('yolov8l-pose.pt') | |
| model_pose.to(device) | |
| return model_pose | |
| def draw_output(image_pil: Image.Image, keypoints: dict): | |
| output_image = draw_keypoints(image_pil, keypoints).convert("RGB") | |
| return output_image | |
| st.title('Pose Estimation App') | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| st.caption(f'Using device: {device}') | |
| mode = st.radio('Select mode:', ['Upload an Image', 'Webcam Capture']) | |
| if mode == 'Upload an Image': | |
| img_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
| elif mode == 'Webcam Capture': | |
| img_file = st.camera_input("Take a picture") | |
| img = None | |
| if img_file is not None: | |
| img = Image.open(img_file) | |
| st.divider() | |
| if img is not None: | |
| # predict | |
| with st.spinner('Predicting...'): | |
| model = load_model() | |
| result = model(img)[0] | |
| st.markdown('**Results:**') | |
| keypoints = utils.get_keypoints(result) | |
| if keypoints is not None: | |
| img = draw_output(img, keypoints) | |
| st.image(img, caption='Predicted image', use_column_width=True) | |
| # calculate angles | |
| lea, rea = utils.get_eye_angles(keypoints) | |
| lba, rba = utils.get_elbow_angles(keypoints) | |
| angles = {'left_eye_angle': lea, 'right_eye_angle': rea, 'left_elbow_angle': lba, 'right_elbow_angle': rba} | |
| st.write('Angles:') | |
| st.json(angles) | |
| st.write('Raw keypoints:') | |
| st.json(keypoints) | |
| else: | |
| st.error('No keypoints detected!') | |
| st.image(img, caption='Original image', use_column_width=True) | |