Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import gradio as gr
|
3 |
+
from ultralytics import YOLO
|
4 |
+
|
5 |
+
# Load a pretrained YOLO model
|
6 |
+
model = YOLO('yolov8n.pt') # Or any other suitable YOLO model
|
7 |
+
|
8 |
+
def predict_image_class(input_img):
|
9 |
+
"""Predicts the class of objects in an image using the YOLO model."""
|
10 |
+
results = model.predict(source=input_img, conf=0.25) # Adjust confidence threshold as needed
|
11 |
+
|
12 |
+
# Process results and extract classes
|
13 |
+
predicted_classes = []
|
14 |
+
for r in results:
|
15 |
+
boxes = r.boxes
|
16 |
+
for box in boxes:
|
17 |
+
cls = model.names[int(box.cls)]
|
18 |
+
predicted_classes.append(cls)
|
19 |
+
|
20 |
+
return ", ".join(predicted_classes) # Return a string of comma-separated classes
|
21 |
+
|
22 |
+
demo = gr.Interface(
|
23 |
+
fn=predict_image_class,
|
24 |
+
inputs=gr.Image(type="filepath"), # Accept image filepaths as input
|
25 |
+
outputs="text",
|
26 |
+
title="Image Class Prediction with YOLO",
|
27 |
+
description="Upload an image and get predictions of the object classes present."
|
28 |
+
)
|
29 |
+
|
30 |
+
demo.launch(debug=True)
|