import streamlit as st from transformers import pipeline from pathlib import Path #from llama_index import download_loader from PyPDF2 import PdfReader def get_pdf_text(pdf_docs): text = "" pdf_reader = PdfReader(pdf_docs) for page in pdf_reader.pages: text += page.extract_text() return text def main(): st.title("PDF Summarizer") uploaded_file = st.file_uploader("Upload your PDF file", type="pdf") if uploaded_file is not None: #Loading mode print(uploaded_file) summarizer = pipeline("summarization", model="facebook/bart-large-cnn") # data Loader for reading PDF # PDFReader = download_loader("PDFReader") # loader = PDFReader() #documents = loader.load_data(file=Path(uploaded_file)) #print(type(documents)) text = get_pdf_text(uploaded_file) print(text) summary = summarizer(text, max_length=50, min_length=30, do_sample=False) st.write(summary) if __name__ == "__main__": main()