ujwal55 commited on
Commit
13fcc0f
Β·
verified Β·
1 Parent(s): 1b330b0

Replacing the existing README.md file

Browse files
Files changed (1) hide show
  1. README.md +17 -7
README.md CHANGED
@@ -1,3 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # Synopsis Scorer with Privacy Protection
2
 
3
  This application evaluates the quality of text synopses against their source content while maintaining privacy through robust text anonymization techniques.
@@ -14,8 +27,8 @@ This application evaluates the quality of text synopses against their source con
14
  ### Prerequisites
15
 
16
  - Python 3.8+
17
- - At least 4GB RAM (recommended for LLM inference)
18
- - 4GB disk space
19
 
20
  ### Installation
21
 
@@ -42,12 +55,8 @@ This application evaluates the quality of text synopses against their source con
42
  ```
43
 
44
  5. Download the Gemma model:
45
- The application will automatically download the quantized Gemma model on first run, or you can manually download it:
46
- ```
47
- mkdir -p models
48
 
49
- Download the model from this url: https://huggingface.co/google/gemma-3-4b-it-qat-q4_0-gguf/resolve/main/gemma-3-4b-it-q4_0.gguf and place it in "models" folder.
50
- ```
51
 
52
  ### Running the Application
53
 
@@ -84,3 +93,4 @@ synopsis-scorer/
84
  β”‚ └── secrets.toml # Configuration secrets
85
  └── models/ # Downloaded LLM models
86
  ```
 
 
1
+ ---
2
+ title: Synopsis Scorer
3
+ emoji: πŸ“˜
4
+ colorFrom: blue
5
+ colorTo: indigo
6
+ sdk: streamlit
7
+ sdk_version: 1.31.0
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
13
+
14
  # Synopsis Scorer with Privacy Protection
15
 
16
  This application evaluates the quality of text synopses against their source content while maintaining privacy through robust text anonymization techniques.
 
27
  ### Prerequisites
28
 
29
  - Python 3.8+
30
+ - At least 8GB RAM (recommended for LLM inference)
31
+ - 2GB disk space
32
 
33
  ### Installation
34
 
 
55
  ```
56
 
57
  5. Download the Gemma model:
58
+ The application will automatically download the quantized Gemma model on first run
 
 
59
 
 
 
60
 
61
  ### Running the Application
62
 
 
93
  β”‚ └── secrets.toml # Configuration secrets
94
  └── models/ # Downloaded LLM models
95
  ```
96
+