File size: 21,852 Bytes
ea40f87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "# =============================================================================\n",
    "# Imports & Setup\n",
    "# =============================================================================\n",
    "import os\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import faiss  # For fast vector similarity search\n",
    "from sentence_transformers import SentenceTransformer  # For generating text embeddings\n",
    "from rank_bm25 import BM25Okapi  # For BM25 keyword-based retrieval\n",
    "import spacy  # For tokenization\n",
    "from sklearn.metrics.pairwise import cosine_similarity  # For computing cosine similarity\n",
    "from sklearn.preprocessing import normalize  # For normalizing BM25 scores\n",
    "\n",
    "# For the Gradio UI\n",
    "import gradio as gr\n",
    "\n",
    "# For response generation using a small language model (we use FLAN-T5-Small)\n",
    "from transformers import pipeline, set_seed\n",
    "\n",
    "# Set a random seed for reproducibility\n",
    "set_seed(42)\n",
    "\n",
    "# Load SpaCy English model (make sure to download it with: python -m spacy download en_core_web_sm)\n",
    "nlp = spacy.load(\"en_core_web_sm\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'pandas.core.frame.DataFrame'>\n",
      "RangeIndex: 9800 entries, 0 to 9799\n",
      "Data columns (total 7 columns):\n",
      " #   Column     Non-Null Count  Dtype  \n",
      "---  ------     --------------  -----  \n",
      " 0   Date       9800 non-null   object \n",
      " 1   Open       9800 non-null   float64\n",
      " 2   High       9800 non-null   float64\n",
      " 3   Low        9800 non-null   float64\n",
      " 4   Close      9800 non-null   float64\n",
      " 5   Adj Close  9800 non-null   float64\n",
      " 6   Volume     9800 non-null   int64  \n",
      "dtypes: float64(5), int64(1), object(1)\n",
      "memory usage: 536.1+ KB\n",
      "None\n",
      "   Year  Open_Min  Open_Max  Close_Min  Close_Max    Avg_Volume  \\\n",
      "0  1986  0.088542  0.177083   0.090278   0.177083  3.620005e+07   \n",
      "1  1987  0.165799  0.548611   0.165799   0.548611  9.454613e+07   \n",
      "2  1988  0.319444  0.484375   0.319444   0.483507  6.906268e+07   \n",
      "3  1989  0.322049  0.618056   0.322917   0.614583  7.735760e+07   \n",
      "4  1990  0.591146  1.102431   0.598090   1.100694  7.408945e+07   \n",
      "\n",
      "                                             Summary  \n",
      "0  In 1986.0, the stock opened between $0.09 and ...  \n",
      "1  In 1987.0, the stock opened between $0.17 and ...  \n",
      "2  In 1988.0, the stock opened between $0.32 and ...  \n",
      "3  In 1989.0, the stock opened between $0.32 and ...  \n",
      "4  In 1990.0, the stock opened between $0.59 and ...  \n"
     ]
    }
   ],
   "source": [
    "# =============================================================================\n",
    "# 1. Data Collection & Preprocessing\n",
    "# =============================================================================\n",
    "# Load the CSV file containing financial data.\n",
    "# (Make sure the CSV file \"MSFT_1986-03-13_2025-02-04.csv\" is in the \"data\" folder)\n",
    "csv_file_path = r\"D:\\ConvAI_Code\\MSFT_1986-03-13_2025-02-04.csv\"  # Adjust the path if necessary\n",
    "# Load the CSV file into a DataFrame\n",
    "df = pd.read_csv(csv_file_path)\n",
    "\n",
    "# Display basic info about the dataset\n",
    "print(df.info())\n",
    "\n",
    "# Data Cleaning & Structuring\n",
    "\n",
    "# Convert 'Date' column to datetime format\n",
    "df['Date'] = pd.to_datetime(df['Date'])\n",
    "\n",
    "# Sort data by Date\n",
    "df = df.sort_values(by='Date')\n",
    "\n",
    "# Extract Year from Date\n",
    "df['Year'] = df['Date'].dt.year\n",
    "\n",
    "# Aggregate data by Year to generate financial summaries\n",
    "yearly_summary = df.groupby('Year').agg(\n",
    "    Open_Min=('Open', 'min'),\n",
    "    Open_Max=('Open', 'max'),\n",
    "    Close_Min=('Close', 'min'),\n",
    "    Close_Max=('Close', 'max'),\n",
    "    Avg_Volume=('Volume', 'mean')\n",
    ").reset_index()\n",
    "\n",
    "# Create a textual summary for each year\n",
    "yearly_summary['Summary'] = yearly_summary.apply(\n",
    "    lambda row: f\"In {row['Year']}, the stock opened between ${row['Open_Min']:.2f} and ${row['Open_Max']:.2f}, \"\n",
    "                f\"while closing between ${row['Close_Min']:.2f} and ${row['Close_Max']:.2f}. \"\n",
    "                f\"The average trading volume was {row['Avg_Volume']:,.0f} shares.\",\n",
    "    axis=1\n",
    ")\n",
    "\n",
    "# Display the cleaned and structured data\n",
    "print(yearly_summary.head())  # Use this for terminal/console\n",
    "# yearly_summary.head()  # Use this in Jupyter Notebook\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "40"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# =============================================================================\n",
    "# 2. Basic RAG Implementation\n",
    "# =============================================================================\n",
    "# Convert financial summaries into text chunks and generate vector embeddings.\n",
    "embedding_model = SentenceTransformer(\"all-MiniLM-L6-v2\")\n",
    "\n",
    "# Convert yearly financial summaries into vector embeddings\n",
    "summary_texts = yearly_summary[\"Summary\"].tolist()  # Extract summaries as text\n",
    "summary_embeddings = embedding_model.encode(summary_texts, convert_to_numpy=True)  # Generate embeddings\n",
    "\n",
    "# Store embeddings as a NumPy array for further processing\n",
    "summary_embeddings.shape  # This should be (num_years, embedding_size)\n",
    "\n",
    "# Define the dimension of embeddings (384 from MiniLM model)\n",
    "embedding_dim = 384\n",
    "\n",
    "# Create a FAISS index (Flat index for now, can be optimized later)\n",
    "faiss_index = faiss.IndexFlatL2(embedding_dim)\n",
    "\n",
    "# Convert embeddings to float32 (FAISS requires this format)\n",
    "summary_embeddings = summary_embeddings.astype('float32')\n",
    "\n",
    "# Add embeddings to the FAISS index\n",
    "faiss_index.add(summary_embeddings)\n",
    "\n",
    "# Store the year information for retrieval\n",
    "year_map = {i: yearly_summary[\"Year\"].iloc[i] for i in range(len(yearly_summary))}\n",
    "\n",
    "# Verify that embeddings are stored successfully\n",
    "faiss_index.ntotal\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Merged summaries shape: (12, 2)\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Year</th>\n",
       "      <th>Merged Summary</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1986</td>\n",
       "      <td>In 1986.0, the stock opened between $0.09 and ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1990</td>\n",
       "      <td>In 1989.0, the stock opened between $0.32 and ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>1992</td>\n",
       "      <td>In 1991.0, the stock opened between $1.03 and ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>1996</td>\n",
       "      <td>In 1994.0, the stock opened between $2.45 and ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>1999</td>\n",
       "      <td>In 1997.0, the stock opened between $10.25 and...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   Year                                     Merged Summary\n",
       "0  1986  In 1986.0, the stock opened between $0.09 and ...\n",
       "1  1990  In 1989.0, the stock opened between $0.32 and ...\n",
       "2  1992  In 1991.0, the stock opened between $1.03 and ...\n",
       "3  1996  In 1994.0, the stock opened between $2.45 and ...\n",
       "4  1999  In 1997.0, the stock opened between $10.25 and..."
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# =============================================================================\n",
    "# 3. Advanced RAG Implementation\n",
    "# =============================================================================\n",
    "# 3.1: BM25 for Keyword-Based Search\n",
    "# Tokenize each summary using SpaCy (tokens are converted to lowercase).\n",
    "tokenized_summaries = [[token.text.lower() for token in nlp(summary)] for summary in summary_texts]\n",
    "# Build the BM25 index.\n",
    "bm25 = BM25Okapi(tokenized_summaries)\n",
    "\n",
    "# 3.2: Define Retrieval Functions\n",
    "\n",
    "def retrieve_similar_summaries(query_text, top_k=3):\n",
    "    \"\"\"\n",
    "    Retrieve similar financial summaries using FAISS vector search.\n",
    "    \"\"\"\n",
    "    query_embedding = embedding_model.encode([query_text], convert_to_numpy=True).astype('float32')\n",
    "    distances, indices = faiss_index.search(query_embedding, top_k)\n",
    "    results = []\n",
    "    for idx in indices[0]:\n",
    "        results.append((year_map[idx], yearly_summary.iloc[idx][\"Summary\"]))\n",
    "    return pd.DataFrame(results, columns=[\"Year\", \"Summary\"])\n",
    "\n",
    "def hybrid_retrieve(query_text, top_k=3, alpha=0.5):\n",
    "    \"\"\"\n",
    "    Hybrid retrieval combining FAISS (vector search) and BM25 (keyword search).\n",
    "    Scores are combined using the weighting factor 'alpha'.\n",
    "    \"\"\"\n",
    "    query_embedding = embedding_model.encode([query_text], convert_to_numpy=True).astype('float32')\n",
    "    _, faiss_indices = faiss_index.search(query_embedding, top_k)\n",
    "    \n",
    "    bm25_scores = bm25.get_scores([token.text.lower() for token in nlp(query_text)])\n",
    "    bm25_top_indices = np.argsort(bm25_scores)[::-1][:top_k]\n",
    "    \n",
    "    combined_scores = {}\n",
    "    for rank, idx in enumerate(faiss_indices[0]):\n",
    "        combined_scores[idx] = alpha * (top_k - rank)\n",
    "    bm25_norm_scores = normalize([bm25_scores])[0]\n",
    "    for rank, idx in enumerate(bm25_top_indices):\n",
    "        if idx in combined_scores:\n",
    "            combined_scores[idx] += (1 - alpha) * (top_k - rank)\n",
    "        else:\n",
    "            combined_scores[idx] = (1 - alpha) * (top_k - rank)\n",
    "    \n",
    "    sorted_results = sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)\n",
    "    results = [(year_map[idx], yearly_summary.iloc[idx][\"Summary\"]) for idx, _ in sorted_results]\n",
    "    return pd.DataFrame(results, columns=[\"Year\", \"Summary\"])\n",
    "\n",
    "def adaptive_retrieve(query_text, top_k=3, alpha=0.5):\n",
    "    \"\"\"\n",
    "    Adaptive retrieval re-ranks results by combining FAISS and BM25 scores.\n",
    "    \"\"\"\n",
    "    query_embedding = embedding_model.encode([query_text], convert_to_numpy=True).astype('float32')\n",
    "    _, faiss_indices = faiss_index.search(query_embedding, top_k)\n",
    "    \n",
    "    query_tokens = [token.text.lower() for token in nlp(query_text)]\n",
    "    bm25_scores = bm25.get_scores(query_tokens)\n",
    "    bm25_top_indices = np.argsort(bm25_scores)[::-1][:top_k]\n",
    "    \n",
    "    faiss_scores = np.linspace(1, 0, num=top_k)\n",
    "    bm25_norm_scores = normalize([bm25_scores])[0]\n",
    "    \n",
    "    combined_scores = {}\n",
    "    for rank, idx in enumerate(faiss_indices[0]):\n",
    "        combined_scores[idx] = alpha * faiss_scores[rank]\n",
    "    for idx in bm25_top_indices:\n",
    "        if idx in combined_scores:\n",
    "            combined_scores[idx] += (1 - alpha) * bm25_norm_scores[idx]\n",
    "        else:\n",
    "            combined_scores[idx] = (1 - alpha) * bm25_norm_scores[idx]\n",
    "    \n",
    "    sorted_results = sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)\n",
    "    results = [(year_map[idx], yearly_summary.iloc[idx][\"Summary\"]) for idx, _ in sorted_results]\n",
    "    return pd.DataFrame(results, columns=[\"Year\", \"Summary\"])\n",
    "\n",
    "def merge_similar_chunks(threshold=0.95):\n",
    "    \"\"\"\n",
    "    Chunk Merging: Merge similar financial summaries based on cosine similarity.\n",
    "    This reduces redundancy when multiple chunks are very similar.\n",
    "    \"\"\"\n",
    "    merged_summaries = []\n",
    "    used_indices = set()\n",
    "    for i in range(len(summary_embeddings)):\n",
    "        if i in used_indices:\n",
    "            continue\n",
    "        similarities = cosine_similarity([summary_embeddings[i]], summary_embeddings)[0]\n",
    "        similar_indices = np.where(similarities >= threshold)[0]\n",
    "        merged_text = \" \".join(yearly_summary.iloc[idx][\"Summary\"] for idx in similar_indices)\n",
    "        merged_summaries.append((yearly_summary.iloc[i][\"Year\"], merged_text))\n",
    "        used_indices.update(similar_indices)\n",
    "    return pd.DataFrame(merged_summaries, columns=[\"Year\", \"Merged Summary\"])\n",
    "\n",
    "# Optional: Check merged summaries for debugging.\n",
    "merged_summary_df = merge_similar_chunks(threshold=0.95)\n",
    "print(\"Merged summaries shape:\", merged_summary_df.shape)\n",
    "merged_summary_df.head()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "* Running on local URL:  http://127.0.0.1:7864\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7864/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 34,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# =============================================================================\n",
    "# 4. UI Development using Gradio (Updated for newer API)\n",
    "# =============================================================================\n",
    "def generate_response(query_text, top_k=3, alpha=0.5):\n",
    "    \"\"\"\n",
    "    Generate an answer for a financial query by:\n",
    "      - Validating the query with an input-side guardrail.\n",
    "      - Retrieving context using adaptive retrieval.\n",
    "      - Generating a refined answer using FLAN-T5-Small.\n",
    "    Returns:\n",
    "      answer (str): The generated answer.\n",
    "      confidence (float): A mock confidence score based on BM25 scores.\n",
    "    \"\"\"\n",
    "    # -----------------------------------------------------------------------------\n",
    "    # Guard Rail Implementation (Input-Side)\n",
    "    # -----------------------------------------------------------------------------\n",
    "    financial_keywords = [\"open\", \"close\", \"stock\", \"price\", \"volume\", \"trading\"]\n",
    "    if not any(keyword in query_text.lower() for keyword in financial_keywords):\n",
    "        return (\"Guardrail Triggered: Your query does not appear to be related to financial data. Please ask a financial question.\"), 0.0\n",
    "\n",
    "    # Retrieve context using adaptive retrieval.\n",
    "    context_df = adaptive_retrieve(query_text, top_k=top_k, alpha=alpha)\n",
    "    context_text = \" \".join(context_df[\"Summary\"].tolist())\n",
    "    \n",
    "    # Adjust the prompt to provide clear instructions.\n",
    "    prompt = f\"Given the following financial data:\\n{context_text}\\nAnswer this question: {query_text}.\"\n",
    "    \n",
    "    # Use FLAN-T5-Small for text generation via the text2text-generation pipeline.\n",
    "    # Increase max_length to allow longer answers.\n",
    "    generator = pipeline('text2text-generation', model='google/flan-t5-small')\n",
    "    generated = generator(prompt, max_length=200, num_return_sequences=1)\n",
    "    answer = generated[0]['generated_text'].replace(prompt, \"\").strip()\n",
    "    \n",
    "    # Fallback message if answer is empty.\n",
    "    if not answer:\n",
    "        answer = \"I'm sorry, I couldn't generate a clear answer. Please try rephrasing your question.\"\n",
    "    \n",
    "    # Compute a mock confidence score using normalized BM25 scores.\n",
    "    query_tokens = [token.text.lower() for token in nlp(query_text)]\n",
    "    bm25_scores = bm25.get_scores(query_tokens)\n",
    "    max_score = np.max(bm25_scores) if np.max(bm25_scores) > 0 else 1\n",
    "    confidence = round(np.mean(bm25_scores) / max_score, 2)\n",
    "    \n",
    "    return answer, confidence\n",
    "\n",
    "# Create the Gradio interface using the new API.\n",
    "iface = gr.Interface(\n",
    "    fn=generate_response,\n",
    "    inputs=gr.Textbox(lines=2, placeholder=\"Enter your financial question here...\"),\n",
    "    outputs=[gr.Textbox(label=\"Answer\"), gr.Textbox(label=\"Confidence Score\")],\n",
    "    title=\"Financial RAG Model Interface\",\n",
    "    description=(\"Ask questions based on the company's financial summaries  \"\n",
    "                 )\n",
    ")\n",
    "\n",
    "# Launch the Gradio interface.\n",
    "iface.launch()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Device set to use cpu\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Question:  What year had the lowest stock prices?\n",
      "Answer:  I'm sorry, I couldn't generate a clear answer. Please try rephrasing your question.\n",
      "Confidence Score:  1.0\n",
      "--------------------------------------------------\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Device set to use cpu\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Question:  How did the trading volume vary?\n",
      "Answer:  The average trading volume was 23,244,919 shares\n",
      "Confidence Score:  1.0\n",
      "--------------------------------------------------\n",
      "Question:  What is the capital of France?\n",
      "Answer:  Guardrail Triggered: Your query does not appear to be related to financial data. Please ask a financial question.\n",
      "Confidence Score:  0.0\n",
      "--------------------------------------------------\n"
     ]
    }
   ],
   "source": [
    "# =============================================================================\n",
    "# 6. Testing & Validation (Updated)\n",
    "# =============================================================================\n",
    "def print_test_results(query_text, top_k=3, alpha=0.5):\n",
    "    answer, confidence = generate_response(query_text, top_k, alpha)\n",
    "    print(\"Question: \", query_text)\n",
    "    print(\"Answer: \", answer)\n",
    "    print(\"Confidence Score: \", confidence)\n",
    "    print(\"-\" * 50)\n",
    "\n",
    "# Test 1: High-confidence financial query.\n",
    "query_high = \"What year had the lowest stock prices?\"\n",
    "print_test_results(query_high)\n",
    "\n",
    "# Test 2: Low-confidence financial query.\n",
    "query_low = \"How did the trading volume vary?\"\n",
    "print_test_results(query_low)\n",
    "\n",
    "# Test 3: Irrelevant query (should trigger guardrail).\n",
    "query_irrelevant = \"What is the capital of France?\"\n",
    "print_test_results(query_irrelevant)\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}