File size: 12,083 Bytes
739895a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
# -*- coding: utf-8 -*-
"""app.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1BmH6jAmykO3k3aZv-Cjz-TWvDrDzrB10
"""
# =============================================================================
# Imports & Setup
# =============================================================================
import os
import numpy as np
import pandas as pd
import faiss # For fast vector similarity search
from sentence_transformers import SentenceTransformer # For generating text embeddings
from rank_bm25 import BM25Okapi # For BM25 keyword-based retrieval
import spacy # For tokenization
from sklearn.metrics.pairwise import cosine_similarity # For computing cosine similarity
from sklearn.preprocessing import normalize # For normalizing BM25 scores
# For the Gradio UI
import gradio as gr
# For response generation using a small language model (we use FLAN-T5-Small)
from transformers import pipeline, set_seed
# Set a random seed for reproducibility
set_seed(42)
# Load SpaCy English model (make sure to download it with: python -m spacy download en_core_web_sm)
nlp = spacy.load("en_core_web_sm")
# =============================================================================
# 1. Data Collection & Preprocessing
# =============================================================================
# Load the CSV file containing financial data.
# (Make sure the CSV file "MSFT_1986-03-13_2025-02-04.csv" is in the "data" folder)
csv_file_path = r"MSFT_1986-03-13_2025-02-04.csv" # Adjust the path if necessary
# Load the CSV file into a DataFrame
df = pd.read_csv(csv_file_path)
# Display basic info about the dataset
print(df.info())
# Data Cleaning & Structuring
# Convert 'Date' column to datetime format
df['Date'] = pd.to_datetime(df['Date'])
# Sort data by Date
df = df.sort_values(by='Date')
# Extract Year from Date
df['Year'] = df['Date'].dt.year
# Aggregate data by Year to generate financial summaries
yearly_summary = df.groupby('Year').agg(
Open_Min=('Open', 'min'),
Open_Max=('Open', 'max'),
Close_Min=('Close', 'min'),
Close_Max=('Close', 'max'),
Avg_Volume=('Volume', 'mean')
).reset_index()
# Create a textual summary for each year
yearly_summary['Summary'] = yearly_summary.apply(
lambda row: f"In {row['Year']}, the stock opened between ${row['Open_Min']:.2f} and ${row['Open_Max']:.2f}, "
f"while closing between ${row['Close_Min']:.2f} and ${row['Close_Max']:.2f}. "
f"The average trading volume was {row['Avg_Volume']:,.0f} shares.",
axis=1
)
# Display the cleaned and structured data
print(yearly_summary.head()) # Use this for terminal/console
# yearly_summary.head() # Use this in Jupyter Notebook
# =============================================================================
# 2. Basic RAG Implementation
# =============================================================================
# Convert financial summaries into text chunks and generate vector embeddings.
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
# Convert yearly financial summaries into vector embeddings
summary_texts = yearly_summary["Summary"].tolist() # Extract summaries as text
summary_embeddings = embedding_model.encode(summary_texts, convert_to_numpy=True) # Generate embeddings
# Store embeddings as a NumPy array for further processing
summary_embeddings.shape # This should be (num_years, embedding_size)
# Define the dimension of embeddings (384 from MiniLM model)
embedding_dim = 384
# Create a FAISS index (Flat index for now, can be optimized later)
faiss_index = faiss.IndexFlatL2(embedding_dim)
# Convert embeddings to float32 (FAISS requires this format)
summary_embeddings = summary_embeddings.astype('float32')
# Add embeddings to the FAISS index
faiss_index.add(summary_embeddings)
# Store the year information for retrieval
year_map = {i: yearly_summary["Year"].iloc[i] for i in range(len(yearly_summary))}
# Verify that embeddings are stored successfully
faiss_index.ntotal
# =============================================================================
# 3. Advanced RAG Implementation
# =============================================================================
# 3.1: BM25 for Keyword-Based Search
# Tokenize each summary using SpaCy (tokens are converted to lowercase).
tokenized_summaries = [[token.text.lower() for token in nlp(summary)] for summary in summary_texts]
# Build the BM25 index.
bm25 = BM25Okapi(tokenized_summaries)
# 3.2: Define Retrieval Functions
def retrieve_similar_summaries(query_text, top_k=3):
"""
Retrieve similar financial summaries using FAISS vector search.
"""
query_embedding = embedding_model.encode([query_text], convert_to_numpy=True).astype('float32')
distances, indices = faiss_index.search(query_embedding, top_k)
results = []
for idx in indices[0]:
results.append((year_map[idx], yearly_summary.iloc[idx]["Summary"]))
return pd.DataFrame(results, columns=["Year", "Summary"])
def hybrid_retrieve(query_text, top_k=3, alpha=0.5):
"""
Hybrid retrieval combining FAISS (vector search) and BM25 (keyword search).
Scores are combined using the weighting factor 'alpha'.
"""
query_embedding = embedding_model.encode([query_text], convert_to_numpy=True).astype('float32')
_, faiss_indices = faiss_index.search(query_embedding, top_k)
bm25_scores = bm25.get_scores([token.text.lower() for token in nlp(query_text)])
bm25_top_indices = np.argsort(bm25_scores)[::-1][:top_k]
combined_scores = {}
for rank, idx in enumerate(faiss_indices[0]):
combined_scores[idx] = alpha * (top_k - rank)
bm25_norm_scores = normalize([bm25_scores])[0]
for rank, idx in enumerate(bm25_top_indices):
if idx in combined_scores:
combined_scores[idx] += (1 - alpha) * (top_k - rank)
else:
combined_scores[idx] = (1 - alpha) * (top_k - rank)
sorted_results = sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)
results = [(year_map[idx], yearly_summary.iloc[idx]["Summary"]) for idx, _ in sorted_results]
return pd.DataFrame(results, columns=["Year", "Summary"])
def adaptive_retrieve(query_text, top_k=3, alpha=0.5):
"""
Adaptive retrieval re-ranks results by combining FAISS and BM25 scores.
"""
query_embedding = embedding_model.encode([query_text], convert_to_numpy=True).astype('float32')
_, faiss_indices = faiss_index.search(query_embedding, top_k)
query_tokens = [token.text.lower() for token in nlp(query_text)]
bm25_scores = bm25.get_scores(query_tokens)
bm25_top_indices = np.argsort(bm25_scores)[::-1][:top_k]
faiss_scores = np.linspace(1, 0, num=top_k)
bm25_norm_scores = normalize([bm25_scores])[0]
combined_scores = {}
for rank, idx in enumerate(faiss_indices[0]):
combined_scores[idx] = alpha * faiss_scores[rank]
for idx in bm25_top_indices:
if idx in combined_scores:
combined_scores[idx] += (1 - alpha) * bm25_norm_scores[idx]
else:
combined_scores[idx] = (1 - alpha) * bm25_norm_scores[idx]
sorted_results = sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)
results = [(year_map[idx], yearly_summary.iloc[idx]["Summary"]) for idx, _ in sorted_results]
return pd.DataFrame(results, columns=["Year", "Summary"])
def merge_similar_chunks(threshold=0.95):
"""
Chunk Merging: Merge similar financial summaries based on cosine similarity.
This reduces redundancy when multiple chunks are very similar.
"""
merged_summaries = []
used_indices = set()
for i in range(len(summary_embeddings)):
if i in used_indices:
continue
similarities = cosine_similarity([summary_embeddings[i]], summary_embeddings)[0]
similar_indices = np.where(similarities >= threshold)[0]
merged_text = " ".join(yearly_summary.iloc[idx]["Summary"] for idx in similar_indices)
merged_summaries.append((yearly_summary.iloc[i]["Year"], merged_text))
used_indices.update(similar_indices)
return pd.DataFrame(merged_summaries, columns=["Year", "Merged Summary"])
# Optional: Check merged summaries for debugging.
merged_summary_df = merge_similar_chunks(threshold=0.95)
print("Merged summaries shape:", merged_summary_df.shape)
merged_summary_df.head()
# =============================================================================
# 4. UI Development using Gradio (Updated for newer API)
# =============================================================================
def generate_response(query_text, top_k=3, alpha=0.5):
"""
Generate an answer for a financial query by:
- Validating the query with an input-side guardrail.
- Retrieving context using adaptive retrieval.
- Generating a refined answer using FLAN-T5-Small.
Returns:
answer (str): The generated answer.
confidence (float): A mock confidence score based on BM25 scores.
"""
# -----------------------------------------------------------------------------
# Guard Rail Implementation (Input-Side)
# -----------------------------------------------------------------------------
financial_keywords = ["open", "close", "stock", "price", "volume", "trading"]
if not any(keyword in query_text.lower() for keyword in financial_keywords):
return ("Guardrail Triggered: Your query does not appear to be related to financial data. Please ask a financial question."), 0.0
# Retrieve context using adaptive retrieval.
context_df = adaptive_retrieve(query_text, top_k=top_k, alpha=alpha)
context_text = " ".join(context_df["Summary"].tolist())
# Adjust the prompt to provide clear instructions.
prompt = f"Given the following financial data:\n{context_text}\nAnswer this question: {query_text}."
# Use FLAN-T5-Small for text generation via the text2text-generation pipeline.
# Increase max_length to allow longer answers.
generator = pipeline('text2text-generation', model='google/flan-t5-small')
generated = generator(prompt, max_length=200, num_return_sequences=1)
answer = generated[0]['generated_text'].replace(prompt, "").strip()
# Fallback message if answer is empty.
if not answer:
answer = "I'm sorry, I couldn't generate a clear answer. Please try rephrasing your question."
# Compute a mock confidence score using normalized BM25 scores.
query_tokens = [token.text.lower() for token in nlp(query_text)]
bm25_scores = bm25.get_scores(query_tokens)
max_score = np.max(bm25_scores) if np.max(bm25_scores) > 0 else 1
confidence = round(np.mean(bm25_scores) / max_score, 2)
return answer, confidence
# Create the Gradio interface using the new API.
iface = gr.Interface(
fn=generate_response,
inputs=gr.Textbox(lines=2, placeholder="Enter your financial question here..."),
outputs=[gr.Textbox(label="Answer"), gr.Textbox(label="Confidence Score")],
title="Financial RAG Model Interface",
description=("Ask questions based on the company's financial summaries "
)
)
# Launch the Gradio interface.
iface.launch()
# =============================================================================
# 6. Testing & Validation (Updated)
# =============================================================================
def print_test_results(query_text, top_k=3, alpha=0.5):
answer, confidence = generate_response(query_text, top_k, alpha)
print("Question: ", query_text)
print("Answer: ", answer)
print("Confidence Score: ", confidence)
print("-" * 50)
# Test 1: High-confidence financial query.
query_high = "What year had the lowest stock prices?"
print_test_results(query_high)
# Test 2: Low-confidence financial query.
query_low = "How did the trading volume vary?"
print_test_results(query_low)
# Test 3: Irrelevant query (should trigger guardrail).
query_irrelevant = "What is the capital of France?"
print_test_results(query_irrelevant) |