|
import click |
|
import os |
|
import sys |
|
import pickle |
|
import numpy as np |
|
from PIL import Image |
|
import glob |
|
import torch |
|
from configs import paths_config, hyperparameters, global_config |
|
from IPython.display import display |
|
import matplotlib.pyplot as plt |
|
from scripts.latent_editor_wrapper import LatentEditorWrapper |
|
|
|
|
|
image_dir_name = '/home/sayantan/processed_images' |
|
use_multi_id_training = False |
|
global_config.device = 'cuda' |
|
paths_config.e4e = '/home/sayantan/PTI/pretrained_models/e4e_ffhq_encode.pt' |
|
paths_config.input_data_id = image_dir_name |
|
paths_config.input_data_path = f'{image_dir_name}' |
|
paths_config.stylegan2_ada_ffhq = '/home/sayantan/PTI/pretrained_models/ffhq.pkl' |
|
paths_config.checkpoints_dir = '/home/sayantan/PTI/' |
|
paths_config.style_clip_pretrained_mappers = '/home/sayantan/PTI/pretrained_models' |
|
hyperparameters.use_locality_regularization = False |
|
hyperparameters.lpips_type = 'squeeze' |
|
|
|
model_id = "MYJJDFVGATAT" |
|
|
|
|
|
|
|
def display_alongside_source_image(images): |
|
res = np.concatenate([np.array(image) for image in images], axis=1) |
|
return Image.fromarray(res) |
|
|
|
def load_generators(model_id, image_name): |
|
with open(paths_config.stylegan2_ada_ffhq, 'rb') as f: |
|
old_G = pickle.load(f)['G_ema'].cuda() |
|
|
|
with open(f'{paths_config.checkpoints_dir}/model_{model_id}_{image_name}.pt', 'rb') as f_new: |
|
new_G = torch.load(f_new).cuda() |
|
|
|
return old_G, new_G |
|
|
|
def plot_syn_images(syn_images,text): |
|
for img in syn_images: |
|
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8).detach().cpu().numpy()[0] |
|
plt.axis('off') |
|
resized_image = Image.fromarray(img,mode='RGB').resize((256,256)) |
|
display(resized_image) |
|
|
|
del img |
|
del resized_image |
|
torch.cuda.empty_cache() |
|
|
|
def syn_images_wandb(img): |
|
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8).detach().cpu().numpy()[0] |
|
plt.axis('off') |
|
resized_image = Image.fromarray(img,mode='RGB').resize((256,256)) |
|
return resized_image |
|
|
|
|
|
def edit(image_name): |
|
generator_type = paths_config.multi_id_model_type if use_multi_id_training else image_name |
|
old_G, new_G = load_generators(model_id, generator_type) |
|
w_path_dir = f'{paths_config.embedding_base_dir}/{paths_config.input_data_id}' |
|
|
|
embedding_dir = f'{w_path_dir}/{paths_config.pti_results_keyword}/{image_name}' |
|
w_pivot = torch.load(f'{embedding_dir}/0.pt') |
|
|
|
old_image = old_G.synthesis(w_pivot, noise_mode='const', force_fp32 = True) |
|
new_image = new_G.synthesis(w_pivot, noise_mode='const', force_fp32 = True) |
|
|
|
latent_editor = LatentEditorWrapper() |
|
latents_after_edit = latent_editor.get_single_interface_gan_edits(w_pivot, [i for i in range(-5,5)]) |
|
|
|
for direction, factor_and_edit in latents_after_edit.items(): |
|
for editkey in factor_and_edit.keys(): |
|
new_image = new_G.synthesis(factor_and_edit[editkey], noise_mode='const', force_fp32 = True) |
|
image_pil = syn_images_wandb(new_image).save(f"/home/sayantan/PTI/{direction}/{editkey}/{image_name}.jpg") |
|
|
|
if __name__ == '__main__': |
|
for image_name in [f.split(".")[0].split("_")[2] for f in sorted(glob.glob("*.pt"))]: |
|
edit(image_name) |
|
|