PTI / edit.py
ucalyptus's picture
pushes
f799d59
import click
import os
import sys
import pickle
import numpy as np
from PIL import Image
import glob
import torch
from configs import paths_config, hyperparameters, global_config
from IPython.display import display
import matplotlib.pyplot as plt
from scripts.latent_editor_wrapper import LatentEditorWrapper
image_dir_name = '/home/sayantan/processed_images'
use_multi_id_training = False
global_config.device = 'cuda'
paths_config.e4e = '/home/sayantan/PTI/pretrained_models/e4e_ffhq_encode.pt'
paths_config.input_data_id = image_dir_name
paths_config.input_data_path = f'{image_dir_name}'
paths_config.stylegan2_ada_ffhq = '/home/sayantan/PTI/pretrained_models/ffhq.pkl'
paths_config.checkpoints_dir = '/home/sayantan/PTI/'
paths_config.style_clip_pretrained_mappers = '/home/sayantan/PTI/pretrained_models'
hyperparameters.use_locality_regularization = False
hyperparameters.lpips_type = 'squeeze'
model_id = "MYJJDFVGATAT"
def display_alongside_source_image(images):
res = np.concatenate([np.array(image) for image in images], axis=1)
return Image.fromarray(res)
def load_generators(model_id, image_name):
with open(paths_config.stylegan2_ada_ffhq, 'rb') as f:
old_G = pickle.load(f)['G_ema'].cuda()
with open(f'{paths_config.checkpoints_dir}/model_{model_id}_{image_name}.pt', 'rb') as f_new:
new_G = torch.load(f_new).cuda()
return old_G, new_G
def plot_syn_images(syn_images,text):
for img in syn_images:
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8).detach().cpu().numpy()[0]
plt.axis('off')
resized_image = Image.fromarray(img,mode='RGB').resize((256,256))
display(resized_image)
#wandb.log({text: [wandb.Image(resized_image, caption="Label")]})
del img
del resized_image
torch.cuda.empty_cache()
def syn_images_wandb(img):
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8).detach().cpu().numpy()[0]
plt.axis('off')
resized_image = Image.fromarray(img,mode='RGB').resize((256,256))
return resized_image
def edit(image_name):
generator_type = paths_config.multi_id_model_type if use_multi_id_training else image_name
old_G, new_G = load_generators(model_id, generator_type)
w_path_dir = f'{paths_config.embedding_base_dir}/{paths_config.input_data_id}'
embedding_dir = f'{w_path_dir}/{paths_config.pti_results_keyword}/{image_name}'
w_pivot = torch.load(f'{embedding_dir}/0.pt')
old_image = old_G.synthesis(w_pivot, noise_mode='const', force_fp32 = True)
new_image = new_G.synthesis(w_pivot, noise_mode='const', force_fp32 = True)
latent_editor = LatentEditorWrapper()
latents_after_edit = latent_editor.get_single_interface_gan_edits(w_pivot, [i for i in range(-5,5)])
for direction, factor_and_edit in latents_after_edit.items():
for editkey in factor_and_edit.keys():
new_image = new_G.synthesis(factor_and_edit[editkey], noise_mode='const', force_fp32 = True)
image_pil = syn_images_wandb(new_image).save(f"/home/sayantan/PTI/{direction}/{editkey}/{image_name}.jpg")
if __name__ == '__main__':
for image_name in [f.split(".")[0].split("_")[2] for f in sorted(glob.glob("*.pt"))]:
edit(image_name)