ubiodee commited on
Commit
df07275
Β·
verified Β·
1 Parent(s): 705536a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -0
app.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ from peft import PeftModel
4
+ import torch
5
+
6
+ # Replace with your model repository ID
7
+ model_repo_id = "ubiodee/Plutuslearn-Llama-3.2-3B-Instruct"
8
+
9
+ # Load the tokenizer
10
+ tokenizer = AutoTokenizer.from_pretrained(model_repo_id)
11
+
12
+ # Load the base model and apply the PEFT adapter
13
+ base_model = AutoModelForCausalLM.from_pretrained(
14
+ "meta-llama/Llama-3.2-3B-Instruct",
15
+ torch_dtype=torch.float16,
16
+ device_map="auto"
17
+ )
18
+ model = PeftModel.from_pretrained(base_model, model_repo_id)
19
+
20
+ # Define the prediction function
21
+ def predict(text):
22
+ inputs = tokenizer(text, return_tensors="pt").to("cuda")
23
+ outputs = model.generate(**inputs, max_length=100) # Adjust parameters as needed
24
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
25
+
26
+ # Create Gradio interface
27
+ demo = gr.Interface(
28
+ fn=predict,
29
+ inputs=gr.Textbox(label="Input Text"),
30
+ outputs=gr.Textbox(label="Model Output"),
31
+ title="My Model Demo",
32
+ description="Test the fine-tuned model hosted on Hugging Face."
33
+ )
34
+
35
+ # Launch the app
36
+ demo.launch()