Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from peft import PeftModel
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Replace with your model repository ID
|
7 |
+
model_repo_id = "ubiodee/Plutuslearn-Llama-3.2-3B-Instruct"
|
8 |
+
|
9 |
+
# Load the tokenizer
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_repo_id)
|
11 |
+
|
12 |
+
# Load the base model and apply the PEFT adapter
|
13 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
14 |
+
"meta-llama/Llama-3.2-3B-Instruct",
|
15 |
+
torch_dtype=torch.float16,
|
16 |
+
device_map="auto"
|
17 |
+
)
|
18 |
+
model = PeftModel.from_pretrained(base_model, model_repo_id)
|
19 |
+
|
20 |
+
# Define the prediction function
|
21 |
+
def predict(text):
|
22 |
+
inputs = tokenizer(text, return_tensors="pt").to("cuda")
|
23 |
+
outputs = model.generate(**inputs, max_length=100) # Adjust parameters as needed
|
24 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
25 |
+
|
26 |
+
# Create Gradio interface
|
27 |
+
demo = gr.Interface(
|
28 |
+
fn=predict,
|
29 |
+
inputs=gr.Textbox(label="Input Text"),
|
30 |
+
outputs=gr.Textbox(label="Model Output"),
|
31 |
+
title="My Model Demo",
|
32 |
+
description="Test the fine-tuned model hosted on Hugging Face."
|
33 |
+
)
|
34 |
+
|
35 |
+
# Launch the app
|
36 |
+
demo.launch()
|