|
import gradio as gr |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
MODEL_NAME = "ubiodee/Test_Plutus" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) |
|
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) |
|
model.eval() |
|
|
|
if torch.cuda.is_available(): |
|
model.to("cuda") |
|
|
|
|
|
def generate_response(prompt): |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=200, |
|
temperature=0.7, |
|
top_p=0.9, |
|
do_sample=True, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.pad_token_id, |
|
) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
if response.startswith(prompt): |
|
response = response[len(prompt):].strip() |
|
|
|
return response |
|
|
|
|
|
demo = gr.Interface( |
|
fn=generate_response, |
|
inputs=gr.Textbox(label="Enter your prompt", lines=4, placeholder="Ask about Plutus..."), |
|
outputs=gr.Textbox(label="Model Response"), |
|
title="Cardano Plutus AI Assistant", |
|
description="Write Plutus smart contracts on Cardano blockchain." |
|
) |
|
|
|
demo.launch() |