Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -31,16 +31,21 @@ def buscar_google(query, hl='es', num_results=10):
|
|
31 |
return serp_data
|
32 |
|
33 |
def identificar_urls_comunes(serps):
|
34 |
-
# Extraer todas las URLs de todas las búsquedas
|
35 |
all_urls = [url for serp in serps for url in serp]
|
36 |
-
|
37 |
-
# Identificar URLs que aparecen en más de una búsqueda
|
38 |
urls_comunes = {url for url in all_urls if all_urls.count(url) > 1}
|
39 |
-
|
40 |
return urls_comunes
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def generar_html_con_colores(serp_results, urls_comunes):
|
43 |
-
# Asignar un color único a cada URL común
|
44 |
url_color_map = {url: color_palette[i % len(color_palette)] for i, url in enumerate(urls_comunes)}
|
45 |
|
46 |
html_table = "<style>td, th {border: 1px solid #ddd; text-align: left; padding: 8px;} tr:nth-child(even) {background-color: #f2f2f2;} th {padding-top: 11px; padding-bottom: 11px; background-color: #4CAF50; color: white;}</style>"
|
@@ -59,11 +64,7 @@ def generar_html_con_colores(serp_results, urls_comunes):
|
|
59 |
if i < len(serp_results[keyword]):
|
60 |
entry = serp_results[keyword][i]
|
61 |
url = entry["URL"]
|
62 |
-
if url in urls_comunes
|
63 |
-
color = url_color_map[url]
|
64 |
-
display_url = f"<a href='{url}' target='_blank' style='color:{color};'>{url}</a>"
|
65 |
-
else:
|
66 |
-
display_url = f"<a href='{url}' target='_blank'>{url}</a>"
|
67 |
html_table += f"<td>{display_url}</td>"
|
68 |
else:
|
69 |
html_table += "<td></td>"
|
@@ -75,20 +76,25 @@ def analyze_keywords(keywords):
|
|
75 |
keywords_list = [keyword.strip() for keyword in keywords.split(',')]
|
76 |
serp_results = {keyword: buscar_google(keyword) for keyword in keywords_list}
|
77 |
|
78 |
-
# Extraer solo las URLs de cada búsqueda para identificar comunes
|
79 |
urls_por_keyword = [[entry["URL"] for entry in serp] for serp in serp_results.values()]
|
80 |
urls_comunes = identificar_urls_comunes(urls_por_keyword)
|
81 |
|
82 |
html_table = generar_html_con_colores(serp_results, urls_comunes)
|
83 |
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
iface = gr.Interface(
|
87 |
fn=analyze_keywords,
|
88 |
inputs="text",
|
89 |
-
outputs="html",
|
90 |
title="Comparador de Keywords en Google",
|
91 |
-
description="Introduce las keywords separadas por comas para encontrar coincidencias en los resultados de búsqueda de Google. Las URLs comunes entre las búsquedas se resaltarán en colores únicos."
|
92 |
)
|
93 |
|
94 |
-
iface.launch()
|
|
|
31 |
return serp_data
|
32 |
|
33 |
def identificar_urls_comunes(serps):
|
|
|
34 |
all_urls = [url for serp in serps for url in serp]
|
|
|
|
|
35 |
urls_comunes = {url for url in all_urls if all_urls.count(url) > 1}
|
|
|
36 |
return urls_comunes
|
37 |
|
38 |
+
def calcular_porcentajes_similaridad(serp_results):
|
39 |
+
urls_por_keyword = [set(entry["URL"] for entry in serp) for serp in serp_results.values()]
|
40 |
+
porcentajes = {}
|
41 |
+
for combo in combinations(serp_results.keys(), 2):
|
42 |
+
intersection = len(urls_por_keyword[list(serp_results.keys()).index(combo[0])] & urls_por_keyword[list(serp_results.keys()).index(combo[1])])
|
43 |
+
union = len(urls_por_keyword[list(serp_results.keys()).index(combo[0])] | urls_por_keyword[list(serp_results.keys()).index(combo[1])])
|
44 |
+
porcentaje = (intersection / union) * 100 if union != 0 else 0
|
45 |
+
porcentajes[combo] = porcentaje
|
46 |
+
return porcentajes
|
47 |
+
|
48 |
def generar_html_con_colores(serp_results, urls_comunes):
|
|
|
49 |
url_color_map = {url: color_palette[i % len(color_palette)] for i, url in enumerate(urls_comunes)}
|
50 |
|
51 |
html_table = "<style>td, th {border: 1px solid #ddd; text-align: left; padding: 8px;} tr:nth-child(even) {background-color: #f2f2f2;} th {padding-top: 11px; padding-bottom: 11px; background-color: #4CAF50; color: white;}</style>"
|
|
|
64 |
if i < len(serp_results[keyword]):
|
65 |
entry = serp_results[keyword][i]
|
66 |
url = entry["URL"]
|
67 |
+
display_url = f"<a href='{url}' target='_blank' style='color:{url_color_map[url] if url in urls_comunes else '#000'};'>{url}</a>"
|
|
|
|
|
|
|
|
|
68 |
html_table += f"<td>{display_url}</td>"
|
69 |
else:
|
70 |
html_table += "<td></td>"
|
|
|
76 |
keywords_list = [keyword.strip() for keyword in keywords.split(',')]
|
77 |
serp_results = {keyword: buscar_google(keyword) for keyword in keywords_list}
|
78 |
|
|
|
79 |
urls_por_keyword = [[entry["URL"] for entry in serp] for serp in serp_results.values()]
|
80 |
urls_comunes = identificar_urls_comunes(urls_por_keyword)
|
81 |
|
82 |
html_table = generar_html_con_colores(serp_results, urls_comunes)
|
83 |
|
84 |
+
porcentajes_similaridad = calcular_porcentajes_similaridad(serp_results)
|
85 |
+
similaridad_html = "<div><strong>Porcentajes de Similaridad:</strong><br>"
|
86 |
+
for combo, porcentaje in porcentajes_similaridad.items():
|
87 |
+
similaridad_html += f"{combo[0]} & {combo[1]}: {porcentaje:.2f}%<br>"
|
88 |
+
similaridad_html += "</div>"
|
89 |
+
|
90 |
+
return html_table, similaridad_html
|
91 |
|
92 |
iface = gr.Interface(
|
93 |
fn=analyze_keywords,
|
94 |
inputs="text",
|
95 |
+
outputs=["html", "html"],
|
96 |
title="Comparador de Keywords en Google",
|
97 |
+
description="Introduce las keywords separadas por comas para encontrar coincidencias en los resultados de búsqueda de Google. Las URLs comunes entre las búsquedas se resaltarán en colores únicos y se mostrará el porcentaje de similaridad."
|
98 |
)
|
99 |
|
100 |
+
iface.launch()
|