Upload 4 files
Browse files- img_gen_v2.py +72 -0
- requirements.txt +6 -0
- streamlit_app.py +95 -0
img_gen_v2.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
from diffusers import StableDiffusionImg2ImgPipeline, \
|
| 4 |
+
StableDiffusionPipeline
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def check_cuda_device():
|
| 8 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 9 |
+
return device
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def get_the_model(device=None):
|
| 13 |
+
model_id = "stabilityai/stable-diffusion-2"
|
| 14 |
+
# if path:
|
| 15 |
+
# pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
|
| 16 |
+
# else:
|
| 17 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id,
|
| 18 |
+
torch_dtype=torch.float16)
|
| 19 |
+
if device:
|
| 20 |
+
pipe.to(device)
|
| 21 |
+
else:
|
| 22 |
+
device = check_cuda_device()
|
| 23 |
+
pipe.to(device)
|
| 24 |
+
|
| 25 |
+
return pipe
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def get_image_to_image_model(path=None, device=None):
|
| 29 |
+
model_id = "stabilityai/stable-diffusion-2"
|
| 30 |
+
if path:
|
| 31 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
| 32 |
+
path,
|
| 33 |
+
torch_dtype=torch.float16)
|
| 34 |
+
else:
|
| 35 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
| 36 |
+
model_id,
|
| 37 |
+
torch_dtype=torch.float16)
|
| 38 |
+
if device:
|
| 39 |
+
if device == "cuda" or device == "cpu":
|
| 40 |
+
pipe.to(device)
|
| 41 |
+
else:
|
| 42 |
+
device = check_cuda_device()
|
| 43 |
+
pipe.to(device)
|
| 44 |
+
|
| 45 |
+
return pipe
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def gen_initial_img(int_prompt):
|
| 49 |
+
# image = get_the_model(num_inference_steps=100).images[0]
|
| 50 |
+
model = get_the_model(None)
|
| 51 |
+
image = model(int_prompt, num_inference_steps=100).images[0]
|
| 52 |
+
|
| 53 |
+
return image
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def generate_story(int_prompt, steps, iterations=100):
|
| 57 |
+
image_dic = {}
|
| 58 |
+
init_img = gen_initial_img(int_prompt)
|
| 59 |
+
img2img_model = get_image_to_image_model()
|
| 60 |
+
|
| 61 |
+
img = init_img
|
| 62 |
+
|
| 63 |
+
for idx, step in enumerate(steps):
|
| 64 |
+
image = img2img_model(prompt=step, image=img, strength=0.75, guidance_scale=7.5,
|
| 65 |
+
num_inference_steps=iterations).images[0]
|
| 66 |
+
image_dic[idx] = {
|
| 67 |
+
"image": image,
|
| 68 |
+
"prompt": step
|
| 69 |
+
}
|
| 70 |
+
img = image
|
| 71 |
+
|
| 72 |
+
return init_img, image_dic
|
requirements.txt
CHANGED
|
@@ -3,3 +3,9 @@ langchain==0.0.153
|
|
| 3 |
openai==0.27.5
|
| 4 |
anthropic==0.2.7
|
| 5 |
python-dotenv==1.0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
openai==0.27.5
|
| 4 |
anthropic==0.2.7
|
| 5 |
python-dotenv==1.0.0
|
| 6 |
+
gTTS==2.3.2
|
| 7 |
+
torch==2.0.0
|
| 8 |
+
diffusers==0.16.1
|
| 9 |
+
transformers
|
| 10 |
+
ftfy
|
| 11 |
+
accelerate
|
streamlit_app.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import requests
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
from gtts import gTTS
|
| 6 |
+
|
| 7 |
+
from img_gen_v2 import generate_story
|
| 8 |
+
from prompt_generation import pipeline
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# Function to create the page navigation
|
| 12 |
+
def page_navigation(current_page):
|
| 13 |
+
col1, col2, col3 = st.columns(3)
|
| 14 |
+
|
| 15 |
+
if current_page > 0:
|
| 16 |
+
with col1:
|
| 17 |
+
if st.button('<< Previous'):
|
| 18 |
+
current_page -= 1
|
| 19 |
+
|
| 20 |
+
with col2:
|
| 21 |
+
st.write(f'Step {current_page} of 10')
|
| 22 |
+
|
| 23 |
+
if current_page < 10:
|
| 24 |
+
with col3:
|
| 25 |
+
if st.button('Next >>'):
|
| 26 |
+
if current_page == 0:
|
| 27 |
+
user_input = st.session_state.user_input
|
| 28 |
+
prompt_response = pipeline(user_input, 10)
|
| 29 |
+
steps = prompt_response.get("steps")
|
| 30 |
+
init_prompt = prompt_response.get("story")
|
| 31 |
+
|
| 32 |
+
init_img, img_dict = generate_story(init_prompt, steps)
|
| 33 |
+
|
| 34 |
+
st.session_state.pipeline_response = prompt_response
|
| 35 |
+
st.session_state.init_img = init_img
|
| 36 |
+
st.session_state.img_dict = img_dict
|
| 37 |
+
|
| 38 |
+
current_page += 1
|
| 39 |
+
|
| 40 |
+
return current_page
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# Main function to display the pages
|
| 44 |
+
def get_pipeline_data(page_number):
|
| 45 |
+
pipeline_response = st.session_state.pipeline_response
|
| 46 |
+
text_output = pipeline_response.get("steps")[page_number - 1]
|
| 47 |
+
|
| 48 |
+
# random_img = f"https://picsum.photos/800/600?random={page_number}"
|
| 49 |
+
# response = requests.get(random_img)
|
| 50 |
+
# image = Image.open(BytesIO(response.content))
|
| 51 |
+
img_dict = st.session_state.img_dict
|
| 52 |
+
img = img_dict[page_number-1]
|
| 53 |
+
|
| 54 |
+
return {"text_output": text_output, "image_obj": img}
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def main():
|
| 58 |
+
st.set_page_config(page_title="Narrative chat", layout="wide")
|
| 59 |
+
st.title("DreamBot")
|
| 60 |
+
|
| 61 |
+
# Initialize the current page
|
| 62 |
+
current_page = st.session_state.get('current_page', 0)
|
| 63 |
+
|
| 64 |
+
# Display content for each page
|
| 65 |
+
if current_page == 0:
|
| 66 |
+
st.write("Tell me what story you would like me to tell:")
|
| 67 |
+
user_input = st.text_area("")
|
| 68 |
+
st.session_state.user_input = user_input
|
| 69 |
+
|
| 70 |
+
else:
|
| 71 |
+
# Retrieve data from random generators
|
| 72 |
+
data = get_pipeline_data(current_page)
|
| 73 |
+
text_output = data.get('text_output', '')
|
| 74 |
+
image = data.get('image_obj', '')
|
| 75 |
+
|
| 76 |
+
# Display text output
|
| 77 |
+
st.write(text_output)
|
| 78 |
+
|
| 79 |
+
tts = gTTS(text_output)
|
| 80 |
+
tts.save('audio.mp3')
|
| 81 |
+
st.audio('audio.mp3')
|
| 82 |
+
|
| 83 |
+
# Display image output
|
| 84 |
+
if image:
|
| 85 |
+
st.image(image, use_column_width=False, width=400)
|
| 86 |
+
|
| 87 |
+
# Display page navigation
|
| 88 |
+
current_page = page_navigation(current_page)
|
| 89 |
+
|
| 90 |
+
st.write('current_page:', current_page)
|
| 91 |
+
st.session_state.current_page = current_page
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
if __name__ == "__main__":
|
| 95 |
+
main()
|