Spaces:
Runtime error
Runtime error
| from collections.abc import Sequence | |
| import mmcv | |
| import numpy as np | |
| import torch | |
| from mmcv.parallel import DataContainer as DC | |
| from PIL import Image | |
| def to_tensor(data): | |
| """Convert objects of various python types to :obj:`torch.Tensor`. | |
| Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`, | |
| :class:`Sequence`, :class:`int` and :class:`float`. | |
| """ | |
| if isinstance(data, torch.Tensor): | |
| return data | |
| elif isinstance(data, np.ndarray): | |
| return torch.from_numpy(data) | |
| elif isinstance(data, Sequence) and not mmcv.is_str(data): | |
| return torch.tensor(data) | |
| elif isinstance(data, int): | |
| return torch.LongTensor([data]) | |
| elif isinstance(data, float): | |
| return torch.FloatTensor([data]) | |
| else: | |
| raise TypeError( | |
| f'Type {type(data)} cannot be converted to tensor.' | |
| 'Supported types are: `numpy.ndarray`, `torch.Tensor`, ' | |
| '`Sequence`, `int` and `float`') | |
| class ToTensor(object): | |
| def __init__(self, keys): | |
| self.keys = keys | |
| def __call__(self, results): | |
| for key in self.keys: | |
| results[key] = to_tensor(results[key]) | |
| return results | |
| def __repr__(self): | |
| return self.__class__.__name__ + f'(keys={self.keys})' | |
| class ImageToTensor(object): | |
| def __init__(self, keys): | |
| self.keys = keys | |
| def __call__(self, results): | |
| for key in self.keys: | |
| img = results[key] | |
| if len(img.shape) < 3: | |
| img = np.expand_dims(img, -1) | |
| results[key] = to_tensor(img.transpose(2, 0, 1)) | |
| return results | |
| def __repr__(self): | |
| return self.__class__.__name__ + f'(keys={self.keys})' | |
| class Transpose(object): | |
| def __init__(self, keys, order): | |
| self.keys = keys | |
| self.order = order | |
| def __call__(self, results): | |
| for key in self.keys: | |
| results[key] = results[key].transpose(self.order) | |
| return results | |
| def __repr__(self): | |
| return self.__class__.__name__ + \ | |
| f'(keys={self.keys}, order={self.order})' | |
| class ToPIL(object): | |
| def __init__(self): | |
| pass | |
| def __call__(self, results): | |
| results['img'] = Image.fromarray(results['img']) | |
| return results | |
| class ToNumpy(object): | |
| def __init__(self): | |
| pass | |
| def __call__(self, results): | |
| results['img'] = np.array(results['img'], dtype=np.float32) | |
| return results | |
| class Collect(object): | |
| """Collect data from the loader relevant to the specific task. | |
| This is usually the last stage of the data loader pipeline. Typically keys | |
| is set to some subset of "img" and "gt_label". | |
| Args: | |
| keys (Sequence[str]): Keys of results to be collected in ``data``. | |
| meta_keys (Sequence[str], optional): Meta keys to be converted to | |
| ``mmcv.DataContainer`` and collected in ``data[img_metas]``. | |
| Default: ``('filename', 'ori_shape', 'img_shape', 'flip', | |
| 'flip_direction', 'img_norm_cfg')`` | |
| Returns: | |
| dict: The result dict contains the following keys | |
| - keys in``self.keys`` | |
| - ``img_metas`` if available | |
| """ | |
| def __init__(self, | |
| keys, | |
| meta_keys=('filename', 'ori_filename', 'ori_shape', | |
| 'img_shape', 'flip', 'flip_direction', | |
| 'img_norm_cfg')): | |
| self.keys = keys | |
| self.meta_keys = meta_keys | |
| def __call__(self, results): | |
| data = {} | |
| img_meta = {} | |
| for key in self.meta_keys: | |
| if key in results: | |
| img_meta[key] = results[key] | |
| data['img_metas'] = DC(img_meta, cpu_only=True) | |
| for key in self.keys: | |
| data[key] = results[key] | |
| return data | |
| def __repr__(self): | |
| return self.__class__.__name__ + \ | |
| f'(keys={self.keys}, meta_keys={self.meta_keys})' | |
| class ToDataContainer: | |
| """Convert results to :obj:`mmcv.DataContainer` by given fields. | |
| Args: | |
| fields (Sequence[dict]): Each field is a dict like | |
| ``dict(key='xxx', **kwargs)``. The ``key`` in result will | |
| be converted to :obj:`mmcv.DataContainer` with ``**kwargs``. | |
| Default: ``(dict(key='img', stack=True), dict(key='gt_bboxes'), | |
| dict(key='gt_labels'))``. | |
| """ | |
| def __init__(self, | |
| fields=(dict(key='img', stack=True), dict(key='gt_bboxes'), | |
| dict(key='gt_labels'))): | |
| self.fields = fields | |
| def __call__(self, results): | |
| """Call function to convert data in results to | |
| :obj:`mmcv.DataContainer`. | |
| Args: | |
| results (dict): Result dict contains the data to convert. | |
| Returns: | |
| dict: The result dict contains the data converted to \ | |
| :obj:`mmcv.DataContainer`. | |
| """ | |
| for field in self.fields: | |
| field = field.copy() | |
| key = field.pop('key') | |
| results[key] = DC(results[key], **field) | |
| return results | |
| def __repr__(self): | |
| return self.__class__.__name__ + f'(fields={self.fields})' | |
| class DefaultFormatBundle: | |
| """Default formatting bundle. | |
| It simplifies the pipeline of formatting common fields, including "img", | |
| "proposals", "gt_bboxes", "gt_labels", "gt_masks" and "gt_semantic_seg". | |
| These fields are formatted as follows. | |
| - img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True) | |
| - proposals: (1)to tensor, (2)to DataContainer | |
| - gt_bboxes: (1)to tensor, (2)to DataContainer | |
| - gt_bboxes_ignore: (1)to tensor, (2)to DataContainer | |
| - gt_labels: (1)to tensor, (2)to DataContainer | |
| - gt_masks: (1)to tensor, (2)to DataContainer (cpu_only=True) | |
| - gt_semantic_seg: (1)unsqueeze dim-0 (2)to tensor, \ | |
| (3)to DataContainer (stack=True) | |
| Args: | |
| img_to_float (bool): Whether to force the image to be converted to | |
| float type. Default: True. | |
| pad_val (dict): A dict for padding value in batch collating, | |
| the default value is `dict(img=0, masks=0, seg=255)`. | |
| Without this argument, the padding value of "gt_semantic_seg" | |
| will be set to 0 by default, which should be 255. | |
| """ | |
| def __init__(self, | |
| img_to_float=True, | |
| pad_val=dict(img=0, masks=0, seg=255)): | |
| self.img_to_float = img_to_float | |
| self.pad_val = pad_val | |
| def __call__(self, results): | |
| """Call function to transform and format common fields in results. | |
| Args: | |
| results (dict): Result dict contains the data to convert. | |
| Returns: | |
| dict: The result dict contains the data that is formatted with \ | |
| default bundle. | |
| """ | |
| data_keys = [ | |
| 'joint_img', # keypoints2d | |
| 'smplx_joint_img', #smplx_joint_img, # projected smplx if valid cam_param, else same as keypoints2d | |
| 'joint_cam', # joint_cam actually not used in any loss, # raw kps3d probably without ra | |
| 'smplx_joint_cam', # kps3d with body, face, hand ra | |
| 'smplx_pose', | |
| 'smplx_shape', | |
| 'smplx_expr', | |
| 'lhand_bbox_center', | |
| 'lhand_bbox_size', | |
| 'rhand_bbox_center', | |
| 'rhand_bbox_size', | |
| 'face_bbox_center', | |
| 'face_bbox_size', | |
| 'body_bbox_center', | |
| 'body_bbox_size', | |
| 'joint_valid', | |
| 'joint_trunc', | |
| 'smplx_joint_valid', | |
| 'smplx_joint_trunc', | |
| 'smplx_pose_valid', | |
| 'smplx_shape_valid', | |
| 'smplx_expr_valid', | |
| 'is_3D', | |
| 'lhand_bbox_valid', | |
| 'rhand_bbox_valid', | |
| 'face_bbox_valid', | |
| 'body_bbox_valid', | |
| 'body_bbox', | |
| 'lhand_bbox', | |
| 'rhand_bbox', | |
| 'face_bbox', | |
| 'gender', | |
| 'bb2img_trans', | |
| 'img2bb_trans', | |
| 'ann_idx' | |
| ] | |
| if 'img' in results: | |
| img = results['img'] | |
| if self.img_to_float is True and img.dtype == np.uint8: | |
| # Normally, image is of uint8 type without normalization. | |
| # At this time, it needs to be forced to be converted to | |
| # flot32, otherwise the model training and inference | |
| # will be wrong. Only used for YOLOX currently . | |
| img = img.astype(np.float32) | |
| # add default meta keys | |
| results = self._add_default_meta_keys(results) | |
| if len(img.shape) < 3: | |
| img = np.expand_dims(img, -1) | |
| img = np.ascontiguousarray(img.transpose(2, 0, 1)) | |
| results['img'] = DC(to_tensor(img), | |
| padding_value=self.pad_val['img'], | |
| stack=True) | |
| for key in data_keys: | |
| if key not in results: | |
| continue | |
| results[key] = DC(to_tensor(results[key])) | |
| # if 'gt_masks' in results: | |
| # results['gt_masks'] = DC( | |
| # results['gt_masks'], | |
| # padding_value=self.pad_val['masks'], | |
| # cpu_only=True) | |
| # if 'gt_semantic_seg' in results: | |
| # results['gt_semantic_seg'] = DC( | |
| # to_tensor(results['gt_semantic_seg'][None, ...]), | |
| # padding_value=self.pad_val['seg'], | |
| # stack=True) | |
| return results | |
| def _add_default_meta_keys(self, results): | |
| """Add default meta keys. | |
| We set default meta keys including `pad_shape`, `scale_factor` and | |
| `img_norm_cfg` to avoid the case where no `Resize`, `Normalize` and | |
| `Pad` are implemented during the whole pipeline. | |
| Args: | |
| results (dict): Result dict contains the data to convert. | |
| Returns: | |
| results (dict): Updated result dict contains the data to convert. | |
| """ | |
| img = results['img'] | |
| results.setdefault('pad_shape', img.shape) | |
| results.setdefault('scale_factor', 1.0) | |
| num_channels = 1 if len(img.shape) < 3 else img.shape[2] | |
| results.setdefault( | |
| 'img_norm_cfg', | |
| dict(mean=np.zeros(num_channels, dtype=np.float32), | |
| std=np.ones(num_channels, dtype=np.float32), | |
| to_rgb=False)) | |
| return results | |
| def __repr__(self): | |
| return self.__class__.__name__ + \ | |
| f'(img_to_float={self.img_to_float})' | |
| class WrapFieldsToLists(object): | |
| """Wrap fields of the data dictionary into lists for evaluation. | |
| This class can be used as a last step of a test or validation | |
| pipeline for single image evaluation or inference. | |
| Example: | |
| >>> test_pipeline = [ | |
| >>> dict(type='LoadImageFromFile'), | |
| >>> dict(type='Normalize', | |
| mean=[123.675, 116.28, 103.53], | |
| std=[58.395, 57.12, 57.375], | |
| to_rgb=True), | |
| >>> dict(type='ImageToTensor', keys=['img']), | |
| >>> dict(type='Collect', keys=['img']), | |
| >>> dict(type='WrapIntoLists') | |
| >>> ] | |
| """ | |
| def __call__(self, results): | |
| # Wrap dict fields into lists | |
| for key, val in results.items(): | |
| results[key] = [val] | |
| return results | |
| def __repr__(self): | |
| return f'{self.__class__.__name__}()' | |