Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| """ | |
| CommandLine: | |
| pytest tests/test_merge_cells.py | |
| """ | |
| import math | |
| import pytest | |
| import torch | |
| import torch.nn.functional as F | |
| from mmcv.ops.merge_cells import (BaseMergeCell, ConcatCell, GlobalPoolingCell, | |
| SumCell) | |
| # All size (14, 7) below is to test the situation that | |
| # the input size can't be divisible by the target size. | |
| def test_sum_cell(inputs_x, inputs_y): | |
| sum_cell = SumCell(256, 256) | |
| output = sum_cell(inputs_x, inputs_y, out_size=inputs_x.shape[-2:]) | |
| assert output.size() == inputs_x.size() | |
| output = sum_cell(inputs_x, inputs_y, out_size=inputs_y.shape[-2:]) | |
| assert output.size() == inputs_y.size() | |
| output = sum_cell(inputs_x, inputs_y) | |
| assert output.size() == inputs_y.size() | |
| def test_concat_cell(inputs_x, inputs_y): | |
| concat_cell = ConcatCell(256, 256) | |
| output = concat_cell(inputs_x, inputs_y, out_size=inputs_x.shape[-2:]) | |
| assert output.size() == inputs_x.size() | |
| output = concat_cell(inputs_x, inputs_y, out_size=inputs_y.shape[-2:]) | |
| assert output.size() == inputs_y.size() | |
| output = concat_cell(inputs_x, inputs_y) | |
| assert output.size() == inputs_y.size() | |
| def test_global_pool_cell(inputs_x, inputs_y): | |
| gp_cell = GlobalPoolingCell(with_out_conv=False) | |
| gp_cell_out = gp_cell(inputs_x, inputs_y, out_size=inputs_x.shape[-2:]) | |
| assert (gp_cell_out.size() == inputs_x.size()) | |
| gp_cell = GlobalPoolingCell(256, 256) | |
| gp_cell_out = gp_cell(inputs_x, inputs_y, out_size=inputs_x.shape[-2:]) | |
| assert (gp_cell_out.size() == inputs_x.size()) | |
| def test_resize_methods(target_size): | |
| inputs_x = torch.randn([2, 256, 128, 128]) | |
| h, w = inputs_x.shape[-2:] | |
| target_h, target_w = target_size | |
| if (h <= target_h) or w <= target_w: | |
| rs_mode = 'upsample' | |
| else: | |
| rs_mode = 'downsample' | |
| if rs_mode == 'upsample': | |
| upsample_methods_list = ['nearest', 'bilinear'] | |
| for method in upsample_methods_list: | |
| merge_cell = BaseMergeCell(upsample_mode=method) | |
| merge_cell_out = merge_cell._resize(inputs_x, target_size) | |
| gt_out = F.interpolate(inputs_x, size=target_size, mode=method) | |
| assert merge_cell_out.equal(gt_out) | |
| elif rs_mode == 'downsample': | |
| merge_cell = BaseMergeCell() | |
| merge_cell_out = merge_cell._resize(inputs_x, target_size) | |
| if h % target_h != 0 or w % target_w != 0: | |
| pad_h = math.ceil(h / target_h) * target_h - h | |
| pad_w = math.ceil(w / target_w) * target_w - w | |
| pad_l = pad_w // 2 | |
| pad_r = pad_w - pad_l | |
| pad_t = pad_h // 2 | |
| pad_b = pad_h - pad_t | |
| pad = (pad_l, pad_r, pad_t, pad_b) | |
| inputs_x = F.pad(inputs_x, pad, mode='constant', value=0.0) | |
| kernel_size = (inputs_x.shape[-2] // target_h, | |
| inputs_x.shape[-1] // target_w) | |
| gt_out = F.max_pool2d( | |
| inputs_x, kernel_size=kernel_size, stride=kernel_size) | |
| print(merge_cell_out.shape, gt_out.shape) | |
| assert (merge_cell_out == gt_out).all() | |
| assert merge_cell_out.shape[-2:] == target_size | |