Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ import sys
|
|
10 |
from diffusers.utils import load_image
|
11 |
from diffusers import EulerDiscreteScheduler, T2IAdapter
|
12 |
|
13 |
-
from huggingface_hub import hf_hub_download, login
|
14 |
import gradio as gr
|
15 |
|
16 |
from pipeline_t2i_adapter import PhotoMakerStableDiffusionXLAdapterPipeline
|
@@ -23,8 +23,17 @@ from aspect_ratio_template import aspect_ratios
|
|
23 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
24 |
login(HF_TOKEN)
|
25 |
# global variable
|
26 |
-
|
27 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
face_detector = FaceAnalysis2(providers=['CPUExecutionProvider', 'CUDAExecutionProvider'], allowed_modules=['detection', 'recognition'])
|
29 |
face_detector.prepare(ctx_id=0, det_size=(640, 640))
|
30 |
|
@@ -375,7 +384,7 @@ with gr.Blocks(css=css) as demo:
|
|
375 |
num_outputs = gr.Slider(
|
376 |
label="Number of output images",
|
377 |
minimum=1,
|
378 |
-
maximum=
|
379 |
step=1,
|
380 |
value=2,
|
381 |
)
|
|
|
10 |
from diffusers.utils import load_image
|
11 |
from diffusers import EulerDiscreteScheduler, T2IAdapter
|
12 |
|
13 |
+
from huggingface_hub import snapshot_download, hf_hub_download, login
|
14 |
import gradio as gr
|
15 |
|
16 |
from pipeline_t2i_adapter import PhotoMakerStableDiffusionXLAdapterPipeline
|
|
|
23 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
24 |
login(HF_TOKEN)
|
25 |
# global variable
|
26 |
+
|
27 |
+
# model_id = 'SG161222/RealVisXL_V5.0'
|
28 |
+
# model_id = 'Lykon/dreamshaper-xl-lightning'
|
29 |
+
# model_id = 'SG161222/RealVisXL_V5.0_Lightning'
|
30 |
+
model_id = 'RunDiffusion/Juggernaut-XI-v11'
|
31 |
+
base_model_path = Path(model_id)
|
32 |
+
os.makedirs(base_model_path, exist_ok=True)
|
33 |
+
snapshot_download(repo_id=model_id, local_dir=base_model_path)
|
34 |
+
|
35 |
+
# base_model_path =
|
36 |
+
# base_model_path =
|
37 |
face_detector = FaceAnalysis2(providers=['CPUExecutionProvider', 'CUDAExecutionProvider'], allowed_modules=['detection', 'recognition'])
|
38 |
face_detector.prepare(ctx_id=0, det_size=(640, 640))
|
39 |
|
|
|
384 |
num_outputs = gr.Slider(
|
385 |
label="Number of output images",
|
386 |
minimum=1,
|
387 |
+
maximum=18,
|
388 |
step=1,
|
389 |
value=2,
|
390 |
)
|