tsqn commited on
Commit
76808b2
·
verified ·
1 Parent(s): 0e44c9b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -4
app.py CHANGED
@@ -10,7 +10,7 @@ import sys
10
  from diffusers.utils import load_image
11
  from diffusers import EulerDiscreteScheduler, T2IAdapter
12
 
13
- from huggingface_hub import hf_hub_download, login
14
  import gradio as gr
15
 
16
  from pipeline_t2i_adapter import PhotoMakerStableDiffusionXLAdapterPipeline
@@ -23,8 +23,17 @@ from aspect_ratio_template import aspect_ratios
23
  HF_TOKEN = os.environ.get("HF_TOKEN", None)
24
  login(HF_TOKEN)
25
  # global variable
26
- base_model_path = 'RunDiffusion/Juggernaut-XI-v11'
27
- # base_model_path = 'SG161222/RealVisXL_V5.0_Lightning'
 
 
 
 
 
 
 
 
 
28
  face_detector = FaceAnalysis2(providers=['CPUExecutionProvider', 'CUDAExecutionProvider'], allowed_modules=['detection', 'recognition'])
29
  face_detector.prepare(ctx_id=0, det_size=(640, 640))
30
 
@@ -375,7 +384,7 @@ with gr.Blocks(css=css) as demo:
375
  num_outputs = gr.Slider(
376
  label="Number of output images",
377
  minimum=1,
378
- maximum=12,
379
  step=1,
380
  value=2,
381
  )
 
10
  from diffusers.utils import load_image
11
  from diffusers import EulerDiscreteScheduler, T2IAdapter
12
 
13
+ from huggingface_hub import snapshot_download, hf_hub_download, login
14
  import gradio as gr
15
 
16
  from pipeline_t2i_adapter import PhotoMakerStableDiffusionXLAdapterPipeline
 
23
  HF_TOKEN = os.environ.get("HF_TOKEN", None)
24
  login(HF_TOKEN)
25
  # global variable
26
+
27
+ # model_id = 'SG161222/RealVisXL_V5.0'
28
+ # model_id = 'Lykon/dreamshaper-xl-lightning'
29
+ # model_id = 'SG161222/RealVisXL_V5.0_Lightning'
30
+ model_id = 'RunDiffusion/Juggernaut-XI-v11'
31
+ base_model_path = Path(model_id)
32
+ os.makedirs(base_model_path, exist_ok=True)
33
+ snapshot_download(repo_id=model_id, local_dir=base_model_path)
34
+
35
+ # base_model_path =
36
+ # base_model_path =
37
  face_detector = FaceAnalysis2(providers=['CPUExecutionProvider', 'CUDAExecutionProvider'], allowed_modules=['detection', 'recognition'])
38
  face_detector.prepare(ctx_id=0, det_size=(640, 640))
39
 
 
384
  num_outputs = gr.Slider(
385
  label="Number of output images",
386
  minimum=1,
387
+ maximum=18,
388
  step=1,
389
  value=2,
390
  )