Spaces:
Build error
Build error
| import spaces | |
| import math | |
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| import safetensors.torch as sf | |
| import db_examples | |
| from PIL import Image | |
| from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline | |
| from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler | |
| from diffusers.models.attention_processor import AttnProcessor2_0 | |
| from transformers import CLIPTextModel, CLIPTokenizer | |
| from briarmbg import BriaRMBG | |
| from enum import Enum | |
| # from torch.hub import download_url_to_file | |
| # 'stablediffusionapi/realistic-vision-v51' | |
| # 'runwayml/stable-diffusion-v1-5' | |
| sd15_name = 'stablediffusionapi/realistic-vision-v51' | |
| tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer") | |
| text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder") | |
| vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae") | |
| unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet") | |
| rmbg = BriaRMBG.from_pretrained("briaai/RMBG-1.4") | |
| # Change UNet | |
| with torch.no_grad(): | |
| new_conv_in = torch.nn.Conv2d(8, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding) | |
| new_conv_in.weight.zero_() | |
| new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight) | |
| new_conv_in.bias = unet.conv_in.bias | |
| unet.conv_in = new_conv_in | |
| unet_original_forward = unet.forward | |
| def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs): | |
| c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample) | |
| c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0) | |
| new_sample = torch.cat([sample, c_concat], dim=1) | |
| kwargs['cross_attention_kwargs'] = {} | |
| return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs) | |
| unet.forward = hooked_unet_forward | |
| # Load | |
| model_path = './models/iclight_sd15_fc.safetensors' | |
| # download_url_to_file(url='https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fc.safetensors', dst=model_path) | |
| sd_offset = sf.load_file(model_path) | |
| sd_origin = unet.state_dict() | |
| keys = sd_origin.keys() | |
| sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()} | |
| unet.load_state_dict(sd_merged, strict=True) | |
| del sd_offset, sd_origin, sd_merged, keys | |
| # Device | |
| device = torch.device('cuda') | |
| text_encoder = text_encoder.to(device=device, dtype=torch.float16) | |
| vae = vae.to(device=device, dtype=torch.bfloat16) | |
| unet = unet.to(device=device, dtype=torch.float16) | |
| rmbg = rmbg.to(device=device, dtype=torch.float32) | |
| # SDP | |
| unet.set_attn_processor(AttnProcessor2_0()) | |
| vae.set_attn_processor(AttnProcessor2_0()) | |
| # Samplers | |
| ddim_scheduler = DDIMScheduler( | |
| num_train_timesteps=1000, | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="scaled_linear", | |
| clip_sample=False, | |
| set_alpha_to_one=False, | |
| steps_offset=1, | |
| ) | |
| euler_a_scheduler = EulerAncestralDiscreteScheduler( | |
| num_train_timesteps=1000, | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| steps_offset=1 | |
| ) | |
| dpmpp_2m_sde_karras_scheduler = DPMSolverMultistepScheduler( | |
| num_train_timesteps=1000, | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| algorithm_type="sde-dpmsolver++", | |
| use_karras_sigmas=True, | |
| steps_offset=1 | |
| ) | |
| # Pipelines | |
| t2i_pipe = StableDiffusionPipeline( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=dpmpp_2m_sde_karras_scheduler, | |
| safety_checker=None, | |
| requires_safety_checker=False, | |
| feature_extractor=None, | |
| image_encoder=None | |
| ) | |
| i2i_pipe = StableDiffusionImg2ImgPipeline( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=dpmpp_2m_sde_karras_scheduler, | |
| safety_checker=None, | |
| requires_safety_checker=False, | |
| feature_extractor=None, | |
| image_encoder=None | |
| ) | |
| def encode_prompt_inner(txt: str): | |
| max_length = tokenizer.model_max_length | |
| chunk_length = tokenizer.model_max_length - 2 | |
| id_start = tokenizer.bos_token_id | |
| id_end = tokenizer.eos_token_id | |
| id_pad = id_end | |
| def pad(x, p, i): | |
| return x[:i] if len(x) >= i else x + [p] * (i - len(x)) | |
| tokens = tokenizer(txt, truncation=False, add_special_tokens=False)["input_ids"] | |
| chunks = [[id_start] + tokens[i: i + chunk_length] + [id_end] for i in range(0, len(tokens), chunk_length)] | |
| chunks = [pad(ck, id_pad, max_length) for ck in chunks] | |
| token_ids = torch.tensor(chunks).to(device=device, dtype=torch.int64) | |
| conds = text_encoder(token_ids).last_hidden_state | |
| return conds | |
| def encode_prompt_pair(positive_prompt, negative_prompt): | |
| c = encode_prompt_inner(positive_prompt) | |
| uc = encode_prompt_inner(negative_prompt) | |
| c_len = float(len(c)) | |
| uc_len = float(len(uc)) | |
| max_count = max(c_len, uc_len) | |
| c_repeat = int(math.ceil(max_count / c_len)) | |
| uc_repeat = int(math.ceil(max_count / uc_len)) | |
| max_chunk = max(len(c), len(uc)) | |
| c = torch.cat([c] * c_repeat, dim=0)[:max_chunk] | |
| uc = torch.cat([uc] * uc_repeat, dim=0)[:max_chunk] | |
| c = torch.cat([p[None, ...] for p in c], dim=1) | |
| uc = torch.cat([p[None, ...] for p in uc], dim=1) | |
| return c, uc | |
| def pytorch2numpy(imgs, quant=True): | |
| results = [] | |
| for x in imgs: | |
| y = x.movedim(0, -1) | |
| if quant: | |
| y = y * 127.5 + 127.5 | |
| y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8) | |
| else: | |
| y = y * 0.5 + 0.5 | |
| y = y.detach().float().cpu().numpy().clip(0, 1).astype(np.float32) | |
| results.append(y) | |
| return results | |
| def numpy2pytorch(imgs): | |
| h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.0 - 1.0 # so that 127 must be strictly 0.0 | |
| h = h.movedim(-1, 1) | |
| return h | |
| def resize_and_center_crop(image, target_width, target_height): | |
| pil_image = Image.fromarray(image) | |
| original_width, original_height = pil_image.size | |
| scale_factor = max(target_width / original_width, target_height / original_height) | |
| resized_width = int(round(original_width * scale_factor)) | |
| resized_height = int(round(original_height * scale_factor)) | |
| resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS) | |
| left = (resized_width - target_width) / 2 | |
| top = (resized_height - target_height) / 2 | |
| right = (resized_width + target_width) / 2 | |
| bottom = (resized_height + target_height) / 2 | |
| cropped_image = resized_image.crop((left, top, right, bottom)) | |
| return np.array(cropped_image) | |
| def resize_without_crop(image, target_width, target_height): | |
| pil_image = Image.fromarray(image) | |
| resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS) | |
| return np.array(resized_image) | |
| def run_rmbg(img, sigma=0.0): | |
| H, W, C = img.shape | |
| assert C == 3 | |
| k = (256.0 / float(H * W)) ** 0.5 | |
| feed = resize_without_crop(img, int(64 * round(W * k)), int(64 * round(H * k))) | |
| feed = numpy2pytorch([feed]).to(device=device, dtype=torch.float32) | |
| alpha = rmbg(feed)[0][0] | |
| alpha = torch.nn.functional.interpolate(alpha, size=(H, W), mode="bilinear") | |
| alpha = alpha.movedim(1, -1)[0] | |
| alpha = alpha.detach().float().cpu().numpy().clip(0, 1) | |
| result = 127 + (img.astype(np.float32) - 127 + sigma) * alpha | |
| return result.clip(0, 255).astype(np.uint8), alpha | |
| def process(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source): | |
| bg_source = BGSource(bg_source) | |
| input_bg = None | |
| if bg_source == BGSource.NONE: | |
| pass | |
| elif bg_source == BGSource.LEFT: | |
| gradient = np.linspace(255, 0, image_width) | |
| image = np.tile(gradient, (image_height, 1)) | |
| input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
| elif bg_source == BGSource.RIGHT: | |
| gradient = np.linspace(0, 255, image_width) | |
| image = np.tile(gradient, (image_height, 1)) | |
| input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
| elif bg_source == BGSource.TOP: | |
| gradient = np.linspace(255, 0, image_height)[:, None] | |
| image = np.tile(gradient, (1, image_width)) | |
| input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
| elif bg_source == BGSource.BOTTOM: | |
| gradient = np.linspace(0, 255, image_height)[:, None] | |
| image = np.tile(gradient, (1, image_width)) | |
| input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
| else: | |
| raise 'Wrong initial latent!' | |
| rng = torch.Generator(device=device).manual_seed(int(seed)) | |
| fg = resize_and_center_crop(input_fg, image_width, image_height) | |
| concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype) | |
| concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor | |
| conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt) | |
| if input_bg is None: | |
| latents = t2i_pipe( | |
| prompt_embeds=conds, | |
| negative_prompt_embeds=unconds, | |
| width=image_width, | |
| height=image_height, | |
| num_inference_steps=steps, | |
| num_images_per_prompt=num_samples, | |
| generator=rng, | |
| output_type='latent', | |
| guidance_scale=cfg, | |
| cross_attention_kwargs={'concat_conds': concat_conds}, | |
| ).images.to(vae.dtype) / vae.config.scaling_factor | |
| else: | |
| bg = resize_and_center_crop(input_bg, image_width, image_height) | |
| bg_latent = numpy2pytorch([bg]).to(device=vae.device, dtype=vae.dtype) | |
| bg_latent = vae.encode(bg_latent).latent_dist.mode() * vae.config.scaling_factor | |
| latents = i2i_pipe( | |
| image=bg_latent, | |
| strength=lowres_denoise, | |
| prompt_embeds=conds, | |
| negative_prompt_embeds=unconds, | |
| width=image_width, | |
| height=image_height, | |
| num_inference_steps=int(round(steps / lowres_denoise)), | |
| num_images_per_prompt=num_samples, | |
| generator=rng, | |
| output_type='latent', | |
| guidance_scale=cfg, | |
| cross_attention_kwargs={'concat_conds': concat_conds}, | |
| ).images.to(vae.dtype) / vae.config.scaling_factor | |
| pixels = vae.decode(latents).sample | |
| pixels = pytorch2numpy(pixels) | |
| pixels = [resize_without_crop( | |
| image=p, | |
| target_width=int(round(image_width * highres_scale / 64.0) * 64), | |
| target_height=int(round(image_height * highres_scale / 64.0) * 64)) | |
| for p in pixels] | |
| pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype) | |
| latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor | |
| latents = latents.to(device=unet.device, dtype=unet.dtype) | |
| image_height, image_width = latents.shape[2] * 8, latents.shape[3] * 8 | |
| fg = resize_and_center_crop(input_fg, image_width, image_height) | |
| concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype) | |
| concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor | |
| latents = i2i_pipe( | |
| image=latents, | |
| strength=highres_denoise, | |
| prompt_embeds=conds, | |
| negative_prompt_embeds=unconds, | |
| width=image_width, | |
| height=image_height, | |
| num_inference_steps=int(round(steps / highres_denoise)), | |
| num_images_per_prompt=num_samples, | |
| generator=rng, | |
| output_type='latent', | |
| guidance_scale=cfg, | |
| cross_attention_kwargs={'concat_conds': concat_conds}, | |
| ).images.to(vae.dtype) / vae.config.scaling_factor | |
| pixels = vae.decode(latents).sample | |
| return pytorch2numpy(pixels) | |
| def process_relight(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source): | |
| input_fg, matting = run_rmbg(input_fg) | |
| results = process(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source) | |
| return input_fg, results | |
| quick_prompts = [ | |
| 'sunshine from window', | |
| 'neon light, city', | |
| 'sunset over sea', | |
| 'golden time', | |
| 'sci-fi RGB glowing, cyberpunk', | |
| 'natural lighting', | |
| 'warm atmosphere, at home, bedroom', | |
| 'magic lit', | |
| 'evil, gothic, Yharnam', | |
| 'light and shadow', | |
| 'shadow from window', | |
| 'soft studio lighting', | |
| 'home atmosphere, cozy bedroom illumination', | |
| 'neon, Wong Kar-wai, warm' | |
| ] | |
| quick_prompts = [[x] for x in quick_prompts] | |
| quick_subjects = [ | |
| 'beautiful woman, detailed face', | |
| 'handsome man, detailed face', | |
| ] | |
| quick_subjects = [[x] for x in quick_subjects] | |
| class BGSource(Enum): | |
| NONE = "None" | |
| LEFT = "Left Light" | |
| RIGHT = "Right Light" | |
| TOP = "Top Light" | |
| BOTTOM = "Bottom Light" | |
| block = gr.Blocks().queue() | |
| with block: | |
| with gr.Row(): | |
| gr.Markdown("## IC-Light (Relighting with Foreground Condition)") | |
| with gr.Row(): | |
| gr.Markdown("See also https://github.com/lllyasviel/IC-Light for background-conditioned model and normal estimation") | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| input_fg = gr.Image(sources='upload', type="numpy", label="Image", height=480) | |
| output_bg = gr.Image(type="numpy", label="Preprocessed Foreground", height=480) | |
| prompt = gr.Textbox(label="Prompt") | |
| bg_source = gr.Radio(choices=[e.value for e in BGSource], | |
| value=BGSource.NONE.value, | |
| label="Lighting Preference (Initial Latent)", type='value') | |
| example_quick_subjects = gr.Dataset(samples=quick_subjects, label='Subject Quick List', samples_per_page=1000, components=[prompt]) | |
| example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Lighting Quick List', samples_per_page=1000, components=[prompt]) | |
| relight_button = gr.Button(value="Relight") | |
| with gr.Group(): | |
| with gr.Row(): | |
| num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
| seed = gr.Number(label="Seed", value=12345, precision=0) | |
| with gr.Row(): | |
| image_width = gr.Slider(label="Image Width", minimum=256, maximum=1024, value=512, step=64) | |
| image_height = gr.Slider(label="Image Height", minimum=256, maximum=1024, value=640, step=64) | |
| with gr.Accordion("Advanced options", open=False): | |
| steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1) | |
| cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=2, step=0.01) | |
| lowres_denoise = gr.Slider(label="Lowres Denoise (for initial latent)", minimum=0.1, maximum=1.0, value=0.9, step=0.01) | |
| highres_scale = gr.Slider(label="Highres Scale", minimum=1.0, maximum=3.0, value=1.5, step=0.01) | |
| highres_denoise = gr.Slider(label="Highres Denoise", minimum=0.1, maximum=1.0, value=0.5, step=0.01) | |
| a_prompt = gr.Textbox(label="Added Prompt", value='best quality') | |
| n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality') | |
| with gr.Column(): | |
| result_gallery = gr.Gallery(height=832, object_fit='contain', label='Outputs') | |
| with gr.Row(): | |
| dummy_image_for_outputs = gr.Image(visible=False, label='Result') | |
| gr.Examples( | |
| fn=lambda *args: [[args[-1]], "imgs/dummy.png"], | |
| examples=db_examples.foreground_conditioned_examples, | |
| inputs=[ | |
| input_fg, prompt, bg_source, image_width, image_height, seed, dummy_image_for_outputs | |
| ], | |
| outputs=[result_gallery, output_bg], | |
| run_on_click=True, examples_per_page=1024 | |
| ) | |
| ips = [input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source] | |
| relight_button.click(fn=process_relight, inputs=ips, outputs=[output_bg, result_gallery]) | |
| example_quick_prompts.click(lambda x, y: ', '.join(y.split(', ')[:2] + [x[0]]), inputs=[example_quick_prompts, prompt], outputs=prompt, show_progress=False, queue=False) | |
| example_quick_subjects.click(lambda x: x[0], inputs=example_quick_subjects, outputs=prompt, show_progress=False, queue=False) | |
| block.launch(server_name='0.0.0.0') | |