app.py
CHANGED
|
@@ -143,7 +143,8 @@ def predict(
|
|
| 143 |
)
|
| 144 |
|
| 145 |
rgb_img = tensor_to_pil(vaedecode_sample[0])
|
| 146 |
-
return
|
|
|
|
| 147 |
else:
|
| 148 |
layereddiffusionapply_sample = ld_fg_apply_layered_diffusion(
|
| 149 |
config="SDXL, Conv Injection", weight=1, model=ckpt[0]
|
|
@@ -181,7 +182,7 @@ def predict(
|
|
| 181 |
mask = tensor_to_pil(mask[0])
|
| 182 |
rgb_img = tensor_to_pil(vaedecode_sample[0])
|
| 183 |
|
| 184 |
-
return
|
| 185 |
# return flatten([rgba_img, mask, rgb_img, ld_image])
|
| 186 |
except Exception as e:
|
| 187 |
raise gr.Error(e)
|
|
@@ -200,9 +201,6 @@ def predict_examples(
|
|
| 200 |
seed=-1,
|
| 201 |
cfg=10,
|
| 202 |
):
|
| 203 |
-
print(
|
| 204 |
-
"RUUNING EXAMPLES", prompt, negative_prompt, input_image, remove_bg, cond_mode
|
| 205 |
-
)
|
| 206 |
return predict(
|
| 207 |
prompt,
|
| 208 |
negative_prompt,
|
|
@@ -225,7 +223,8 @@ css = """
|
|
| 225 |
"""
|
| 226 |
with gr.Blocks(css=css) as blocks:
|
| 227 |
gr.Markdown("""# LayerDiffuse (unofficial)
|
| 228 |
-
|
|
|
|
| 229 |
""")
|
| 230 |
|
| 231 |
with gr.Row():
|
|
@@ -282,8 +281,10 @@ with gr.Blocks(css=css) as blocks:
|
|
| 282 |
label="Denoise", value=1.0, minimum=0.0, maximum=1.0, step=0.01
|
| 283 |
)
|
| 284 |
|
| 285 |
-
with gr.Column(
|
| 286 |
-
|
|
|
|
|
|
|
| 287 |
|
| 288 |
inputs = [
|
| 289 |
prompt,
|
|
@@ -298,7 +299,7 @@ with gr.Blocks(css=css) as blocks:
|
|
| 298 |
cfg,
|
| 299 |
denoise,
|
| 300 |
]
|
| 301 |
-
outputs = [
|
| 302 |
|
| 303 |
gr.Examples(
|
| 304 |
fn=predict_examples,
|
|
|
|
| 143 |
)
|
| 144 |
|
| 145 |
rgb_img = tensor_to_pil(vaedecode_sample[0])
|
| 146 |
+
return (rgb_img[0], None, seed)
|
| 147 |
+
|
| 148 |
else:
|
| 149 |
layereddiffusionapply_sample = ld_fg_apply_layered_diffusion(
|
| 150 |
config="SDXL, Conv Injection", weight=1, model=ckpt[0]
|
|
|
|
| 182 |
mask = tensor_to_pil(mask[0])
|
| 183 |
rgb_img = tensor_to_pil(vaedecode_sample[0])
|
| 184 |
|
| 185 |
+
return (rgba_img[0], mask[0], seed)
|
| 186 |
# return flatten([rgba_img, mask, rgb_img, ld_image])
|
| 187 |
except Exception as e:
|
| 188 |
raise gr.Error(e)
|
|
|
|
| 201 |
seed=-1,
|
| 202 |
cfg=10,
|
| 203 |
):
|
|
|
|
|
|
|
|
|
|
| 204 |
return predict(
|
| 205 |
prompt,
|
| 206 |
negative_prompt,
|
|
|
|
| 223 |
"""
|
| 224 |
with gr.Blocks(css=css) as blocks:
|
| 225 |
gr.Markdown("""# LayerDiffuse (unofficial)
|
| 226 |
+
Using ComfyUI building blocks with custom node by [huchenlei](https://github.com/huchenlei/ComfyUI-layerdiffuse)
|
| 227 |
+
models: [LayerDiffusion/layerdiffusion-v1](https://huggingface.co/LayerDiffusion/layerdiffusion-v1/tree/main)
|
| 228 |
""")
|
| 229 |
|
| 230 |
with gr.Row():
|
|
|
|
| 281 |
label="Denoise", value=1.0, minimum=0.0, maximum=1.0, step=0.01
|
| 282 |
)
|
| 283 |
|
| 284 |
+
with gr.Column():
|
| 285 |
+
image = gr.Image()
|
| 286 |
+
with gr.Accordion(label="Mask", open=False):
|
| 287 |
+
mask = gr.Image()
|
| 288 |
|
| 289 |
inputs = [
|
| 290 |
prompt,
|
|
|
|
| 299 |
cfg,
|
| 300 |
denoise,
|
| 301 |
]
|
| 302 |
+
outputs = [image, mask, curr_seed]
|
| 303 |
|
| 304 |
gr.Examples(
|
| 305 |
fn=predict_examples,
|