Spaces:
Sleeping
Sleeping
| # Copyright (c) 2023 Amphion. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| from typing import Iterable | |
| import torch | |
| import numpy as np | |
| import torch.utils.data | |
| from torch.nn.utils.rnn import pad_sequence | |
| from utils.data_utils import * | |
| from torch.utils.data import ConcatDataset, Dataset | |
| class VocoderDataset(torch.utils.data.Dataset): | |
| def __init__(self, cfg, dataset, is_valid=False): | |
| """ | |
| Args: | |
| cfg: config | |
| dataset: dataset name | |
| is_valid: whether to use train or valid dataset | |
| """ | |
| assert isinstance(dataset, str) | |
| processed_data_dir = os.path.join(cfg.preprocess.processed_dir, dataset) | |
| meta_file = cfg.preprocess.valid_file if is_valid else cfg.preprocess.train_file | |
| self.metafile_path = os.path.join(processed_data_dir, meta_file) | |
| self.metadata = self.get_metadata() | |
| self.data_root = processed_data_dir | |
| self.cfg = cfg | |
| if cfg.preprocess.use_audio: | |
| self.utt2audio_path = {} | |
| for utt_info in self.metadata: | |
| dataset = utt_info["Dataset"] | |
| uid = utt_info["Uid"] | |
| utt = "{}_{}".format(dataset, uid) | |
| self.utt2audio_path[utt] = os.path.join( | |
| cfg.preprocess.processed_dir, | |
| dataset, | |
| cfg.preprocess.audio_dir, | |
| uid + ".npy", | |
| ) | |
| elif cfg.preprocess.use_label: | |
| self.utt2label_path = {} | |
| for utt_info in self.metadata: | |
| dataset = utt_info["Dataset"] | |
| uid = utt_info["Uid"] | |
| utt = "{}_{}".format(dataset, uid) | |
| self.utt2label_path[utt] = os.path.join( | |
| cfg.preprocess.processed_dir, | |
| dataset, | |
| cfg.preprocess.label_dir, | |
| uid + ".npy", | |
| ) | |
| elif cfg.preprocess.use_one_hot: | |
| self.utt2one_hot_path = {} | |
| for utt_info in self.metadata: | |
| dataset = utt_info["Dataset"] | |
| uid = utt_info["Uid"] | |
| utt = "{}_{}".format(dataset, uid) | |
| self.utt2one_hot_path[utt] = os.path.join( | |
| cfg.preprocess.processed_dir, | |
| dataset, | |
| cfg.preprocess.one_hot_dir, | |
| uid + ".npy", | |
| ) | |
| if cfg.preprocess.use_mel: | |
| self.utt2mel_path = {} | |
| for utt_info in self.metadata: | |
| dataset = utt_info["Dataset"] | |
| uid = utt_info["Uid"] | |
| utt = "{}_{}".format(dataset, uid) | |
| self.utt2mel_path[utt] = os.path.join( | |
| cfg.preprocess.processed_dir, | |
| dataset, | |
| cfg.preprocess.mel_dir, | |
| uid + ".npy", | |
| ) | |
| if cfg.preprocess.use_frame_pitch: | |
| self.utt2frame_pitch_path = {} | |
| for utt_info in self.metadata: | |
| dataset = utt_info["Dataset"] | |
| uid = utt_info["Uid"] | |
| utt = "{}_{}".format(dataset, uid) | |
| self.utt2frame_pitch_path[utt] = os.path.join( | |
| cfg.preprocess.processed_dir, | |
| dataset, | |
| cfg.preprocess.pitch_dir, | |
| uid + ".npy", | |
| ) | |
| if cfg.preprocess.use_uv: | |
| self.utt2uv_path = {} | |
| for utt_info in self.metadata: | |
| dataset = utt_info["Dataset"] | |
| uid = utt_info["Uid"] | |
| utt = "{}_{}".format(dataset, uid) | |
| self.utt2uv_path[utt] = os.path.join( | |
| cfg.preprocess.processed_dir, | |
| dataset, | |
| cfg.preprocess.uv_dir, | |
| uid + ".npy", | |
| ) | |
| if cfg.preprocess.use_amplitude_phase: | |
| self.utt2logamp_path = {} | |
| self.utt2pha_path = {} | |
| self.utt2rea_path = {} | |
| self.utt2imag_path = {} | |
| for utt_info in self.metadata: | |
| dataset = utt_info["Dataset"] | |
| uid = utt_info["Uid"] | |
| utt = "{}_{}".format(dataset, uid) | |
| self.utt2logamp_path[utt] = os.path.join( | |
| cfg.preprocess.processed_dir, | |
| dataset, | |
| cfg.preprocess.log_amplitude_dir, | |
| uid + ".npy", | |
| ) | |
| self.utt2pha_path[utt] = os.path.join( | |
| cfg.preprocess.processed_dir, | |
| dataset, | |
| cfg.preprocess.phase_dir, | |
| uid + ".npy", | |
| ) | |
| self.utt2rea_path[utt] = os.path.join( | |
| cfg.preprocess.processed_dir, | |
| dataset, | |
| cfg.preprocess.real_dir, | |
| uid + ".npy", | |
| ) | |
| self.utt2imag_path[utt] = os.path.join( | |
| cfg.preprocess.processed_dir, | |
| dataset, | |
| cfg.preprocess.imaginary_dir, | |
| uid + ".npy", | |
| ) | |
| def __getitem__(self, index): | |
| utt_info = self.metadata[index] | |
| dataset = utt_info["Dataset"] | |
| uid = utt_info["Uid"] | |
| utt = "{}_{}".format(dataset, uid) | |
| single_feature = dict() | |
| if self.cfg.preprocess.use_mel: | |
| mel = np.load(self.utt2mel_path[utt]) | |
| assert mel.shape[0] == self.cfg.preprocess.n_mel # [n_mels, T] | |
| if "target_len" not in single_feature.keys(): | |
| single_feature["target_len"] = mel.shape[1] | |
| single_feature["mel"] = mel | |
| if self.cfg.preprocess.use_frame_pitch: | |
| frame_pitch = np.load(self.utt2frame_pitch_path[utt]) | |
| if "target_len" not in single_feature.keys(): | |
| single_feature["target_len"] = len(frame_pitch) | |
| aligned_frame_pitch = align_length( | |
| frame_pitch, single_feature["target_len"] | |
| ) | |
| single_feature["frame_pitch"] = aligned_frame_pitch | |
| if self.cfg.preprocess.use_audio: | |
| audio = np.load(self.utt2audio_path[utt]) | |
| single_feature["audio"] = audio | |
| return single_feature | |
| def get_metadata(self): | |
| with open(self.metafile_path, "r", encoding="utf-8") as f: | |
| metadata = json.load(f) | |
| return metadata | |
| def get_dataset_name(self): | |
| return self.metadata[0]["Dataset"] | |
| def __len__(self): | |
| return len(self.metadata) | |
| class VocoderConcatDataset(ConcatDataset): | |
| def __init__(self, datasets: Iterable[Dataset], full_audio_inference=False): | |
| """Concatenate a series of datasets with their random inference audio merged.""" | |
| super().__init__(datasets) | |
| self.cfg = self.datasets[0].cfg | |
| self.metadata = [] | |
| # Merge metadata | |
| for dataset in self.datasets: | |
| self.metadata += dataset.metadata | |
| # Merge random inference features | |
| if full_audio_inference: | |
| self.eval_audios = [] | |
| self.eval_dataset_names = [] | |
| if self.cfg.preprocess.use_mel: | |
| self.eval_mels = [] | |
| if self.cfg.preprocess.use_frame_pitch: | |
| self.eval_pitchs = [] | |
| for dataset in self.datasets: | |
| self.eval_audios.append(dataset.eval_audio) | |
| self.eval_dataset_names.append(dataset.get_dataset_name()) | |
| if self.cfg.preprocess.use_mel: | |
| self.eval_mels.append(dataset.eval_mel) | |
| if self.cfg.preprocess.use_frame_pitch: | |
| self.eval_pitchs.append(dataset.eval_pitch) | |
| class VocoderCollator(object): | |
| """Zero-pads model inputs and targets based on number of frames per step""" | |
| def __init__(self, cfg): | |
| self.cfg = cfg | |
| def __call__(self, batch): | |
| packed_batch_features = dict() | |
| # mel: [b, n_mels, frame] | |
| # frame_pitch: [b, frame] | |
| # audios: [b, frame * hop_size] | |
| for key in batch[0].keys(): | |
| if key == "target_len": | |
| packed_batch_features["target_len"] = torch.LongTensor( | |
| [b["target_len"] for b in batch] | |
| ) | |
| masks = [ | |
| torch.ones((b["target_len"], 1), dtype=torch.long) for b in batch | |
| ] | |
| packed_batch_features["mask"] = pad_sequence( | |
| masks, batch_first=True, padding_value=0 | |
| ) | |
| elif key == "mel": | |
| values = [torch.from_numpy(b[key]).T for b in batch] | |
| packed_batch_features[key] = pad_sequence( | |
| values, batch_first=True, padding_value=0 | |
| ) | |
| else: | |
| values = [torch.from_numpy(b[key]) for b in batch] | |
| packed_batch_features[key] = pad_sequence( | |
| values, batch_first=True, padding_value=0 | |
| ) | |
| return packed_batch_features | |