Spaces:
Sleeping
Sleeping
| # Copyright (c) 2023 Amphion. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import librosa | |
| import numpy as np | |
| from pypesq import pesq | |
| def extract_pesq(audio_ref, audio_deg, fs=None, method="cut"): | |
| """Extract PESQ for a two given audio. | |
| audio1: the given reference audio. It is a numpy array. | |
| audio2: the given synthesized audio. It is a numpy array. | |
| fs: sampling rate. | |
| method: "dtw" will use dtw algorithm to align the length of the ground truth and predicted audio. | |
| "cut" will cut both audios into a same length according to the one with the shorter length. | |
| """ | |
| # Load audio | |
| if fs != None: | |
| audio_ref, _ = librosa.load(audio_ref, sr=fs) | |
| audio_deg, _ = librosa.load(audio_deg, sr=fs) | |
| else: | |
| audio_ref, fs = librosa.load(audio_ref) | |
| audio_deg, fs = librosa.load(audio_deg) | |
| # Resample | |
| if fs != 16000: | |
| audio_ref = librosa.resample(audio_ref, orig_sr=fs, target_sr=16000) | |
| audio_deg = librosa.resample(audio_deg, orig_sr=fs, target_sr=16000) | |
| fs = 16000 | |
| # Audio length alignment | |
| if len(audio_ref) != len(audio_deg): | |
| if method == "cut": | |
| length = min(len(audio_ref), len(audio_deg)) | |
| audio_ref = audio_ref[:length] | |
| audio_deg = audio_deg[:length] | |
| elif method == "dtw": | |
| _, wp = librosa.sequence.dtw(audio_ref, audio_deg, backtrack=True) | |
| audio_ref_new = [] | |
| audio_deg_new = [] | |
| for i in range(wp.shape[0]): | |
| ref_index = wp[i][0] | |
| deg_index = wp[i][1] | |
| audio_ref_new.append(audio_ref[ref_index]) | |
| audio_deg_new.append(audio_deg[deg_index]) | |
| audio_ref = np.array(audio_ref_new) | |
| audio_deg = np.array(audio_deg_new) | |
| assert len(audio_ref) == len(audio_deg) | |
| # Compute pesq | |
| score = pesq(audio_ref, audio_deg, fs) | |
| return score | |