Spaces:
Sleeping
Sleeping
| # This module is from [WeNet](https://github.com/wenet-e2e/wenet). | |
| # ## Citations | |
| # ```bibtex | |
| # @inproceedings{yao2021wenet, | |
| # title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, | |
| # author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, | |
| # booktitle={Proc. Interspeech}, | |
| # year={2021}, | |
| # address={Brno, Czech Republic }, | |
| # organization={IEEE} | |
| # } | |
| # @article{zhang2022wenet, | |
| # title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, | |
| # author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, | |
| # journal={arXiv preprint arXiv:2203.15455}, | |
| # year={2022} | |
| # } | |
| # | |
| """Positonal Encoding Module.""" | |
| import math | |
| from typing import Tuple, Union | |
| import torch | |
| import torch.nn.functional as F | |
| class PositionalEncoding(torch.nn.Module): | |
| """Positional encoding. | |
| :param int d_model: embedding dim | |
| :param float dropout_rate: dropout rate | |
| :param int max_len: maximum input length | |
| PE(pos, 2i) = sin(pos/(10000^(2i/dmodel))) | |
| PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel))) | |
| """ | |
| def __init__( | |
| self, | |
| d_model: int, | |
| dropout_rate: float, | |
| max_len: int = 5000, | |
| reverse: bool = False, | |
| ): | |
| """Construct an PositionalEncoding object.""" | |
| super().__init__() | |
| self.d_model = d_model | |
| self.xscale = math.sqrt(self.d_model) | |
| self.dropout = torch.nn.Dropout(p=dropout_rate) | |
| self.max_len = max_len | |
| self.pe = torch.zeros(self.max_len, self.d_model) | |
| position = torch.arange(0, self.max_len, dtype=torch.float32).unsqueeze(1) | |
| div_term = torch.exp( | |
| torch.arange(0, self.d_model, 2, dtype=torch.float32) | |
| * -(math.log(10000.0) / self.d_model) | |
| ) | |
| self.pe[:, 0::2] = torch.sin(position * div_term) | |
| self.pe[:, 1::2] = torch.cos(position * div_term) | |
| self.pe = self.pe.unsqueeze(0) | |
| def forward( | |
| self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0 | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Add positional encoding. | |
| Args: | |
| x (torch.Tensor): Input. Its shape is (batch, time, ...) | |
| offset (int, torch.tensor): position offset | |
| Returns: | |
| torch.Tensor: Encoded tensor. Its shape is (batch, time, ...) | |
| torch.Tensor: for compatibility to RelPositionalEncoding | |
| """ | |
| self.pe = self.pe.to(x.device) | |
| pos_emb = self.position_encoding(offset, x.size(1), False) | |
| x = x * self.xscale + pos_emb | |
| return self.dropout(x), self.dropout(pos_emb) | |
| def position_encoding( | |
| self, offset: Union[int, torch.Tensor], size: int, apply_dropout: bool = True | |
| ) -> torch.Tensor: | |
| """For getting encoding in a streaming fashion | |
| Attention!!!!! | |
| we apply dropout only once at the whole utterance level in a none | |
| streaming way, but will call this function several times with | |
| increasing input size in a streaming scenario, so the dropout will | |
| be applied several times. | |
| Args: | |
| offset (int or torch.tensor): start offset | |
| size (int): required size of position encoding | |
| Returns: | |
| torch.Tensor: Corresponding encoding | |
| """ | |
| # How to subscript a Union type: | |
| # https://github.com/pytorch/pytorch/issues/69434 | |
| if isinstance(offset, int): | |
| assert offset + size < self.max_len | |
| pos_emb = self.pe[:, offset : offset + size] | |
| elif isinstance(offset, torch.Tensor) and offset.dim() == 0: # scalar | |
| assert offset + size < self.max_len | |
| pos_emb = self.pe[:, offset : offset + size] | |
| else: # for batched streaming decoding on GPU | |
| assert torch.max(offset) + size < self.max_len | |
| index = offset.unsqueeze(1) + torch.arange(0, size).to( | |
| offset.device | |
| ) # B X T | |
| flag = index > 0 | |
| # remove negative offset | |
| index = index * flag | |
| pos_emb = F.embedding(index, self.pe[0]) # B X T X d_model | |
| if apply_dropout: | |
| pos_emb = self.dropout(pos_emb) | |
| return pos_emb | |
| class RelPositionalEncoding(PositionalEncoding): | |
| """Relative positional encoding module. | |
| See : Appendix B in https://arxiv.org/abs/1901.02860 | |
| Args: | |
| d_model (int): Embedding dimension. | |
| dropout_rate (float): Dropout rate. | |
| max_len (int): Maximum input length. | |
| """ | |
| def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000): | |
| """Initialize class.""" | |
| super().__init__(d_model, dropout_rate, max_len, reverse=True) | |
| def forward( | |
| self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0 | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Compute positional encoding. | |
| Args: | |
| x (torch.Tensor): Input tensor (batch, time, `*`). | |
| Returns: | |
| torch.Tensor: Encoded tensor (batch, time, `*`). | |
| torch.Tensor: Positional embedding tensor (1, time, `*`). | |
| """ | |
| self.pe = self.pe.to(x.device) | |
| x = x * self.xscale | |
| pos_emb = self.position_encoding(offset, x.size(1), False) | |
| return self.dropout(x), self.dropout(pos_emb) | |
| class NoPositionalEncoding(torch.nn.Module): | |
| """No position encoding""" | |
| def __init__(self, d_model: int, dropout_rate: float): | |
| super().__init__() | |
| self.d_model = d_model | |
| self.dropout = torch.nn.Dropout(p=dropout_rate) | |
| def forward( | |
| self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0 | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Just return zero vector for interface compatibility""" | |
| pos_emb = torch.zeros(1, x.size(1), self.d_model).to(x.device) | |
| return self.dropout(x), pos_emb | |
| def position_encoding( | |
| self, offset: Union[int, torch.Tensor], size: int | |
| ) -> torch.Tensor: | |
| return torch.zeros(1, size, self.d_model) | |