Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	File size: 8,209 Bytes
			
			| 0d80816 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 | # Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import librosa
import numpy as np
import torch
import parselmouth
import torchcrepe
import pyworld as pw
def get_bin_index(f0, m, M, n_bins, use_log_scale):
    """
    WARNING: to abandon!
    Args:
        raw_f0: tensor whose shpae is (N, frame_len)
    Returns:
        index: tensor whose shape is same to f0
    """
    raw_f0 = f0.clone()
    raw_m, raw_M = m, M
    if use_log_scale:
        f0[torch.where(f0 == 0)] = 1
        f0 = torch.log(f0)
        m, M = float(np.log(m)), float(np.log(M))
    # Set normal index in [1, n_bins - 1]
    width = (M + 1e-7 - m) / (n_bins - 1)
    index = (f0 - m) // width + 1
    # Set unvoiced frames as 0, Therefore, the vocabulary is [0, n_bins- 1], whose size is n_bins
    index[torch.where(f0 == 0)] = 0
    # TODO: Boundary check (special: to judge whether 0 for unvoiced)
    if torch.any(raw_f0 > raw_M):
        print("F0 Warning: too high f0: {}".format(raw_f0[torch.where(raw_f0 > raw_M)]))
        index[torch.where(raw_f0 > raw_M)] = n_bins - 1
    if torch.any(raw_f0 < raw_m):
        print("F0 Warning: too low f0: {}".format(raw_f0[torch.where(f0 < m)]))
        index[torch.where(f0 < m)] = 0
    return torch.as_tensor(index, dtype=torch.long, device=f0.device)
def f0_to_coarse(f0, pitch_bin, pitch_min, pitch_max):
    ## TODO: Figure out the detail of this function
    f0_mel_min = 1127 * np.log(1 + pitch_min / 700)
    f0_mel_max = 1127 * np.log(1 + pitch_max / 700)
    is_torch = isinstance(f0, torch.Tensor)
    f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
    f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (pitch_bin - 2) / (
        f0_mel_max - f0_mel_min
    ) + 1
    f0_mel[f0_mel <= 1] = 1
    f0_mel[f0_mel > pitch_bin - 1] = pitch_bin - 1
    f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int32)
    assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (
        f0_coarse.max(),
        f0_coarse.min(),
    )
    return f0_coarse
def interpolate(f0):
    """Interpolate the unvoiced part. Thus the f0 can be passed to a subtractive synthesizer.
    Args:
        f0: A numpy array of shape (seq_len,)
    Returns:
        f0: Interpolated f0 of shape (seq_len,)
        uv: Unvoiced part of shape (seq_len,)
    """
    uv = f0 == 0
    if len(f0[~uv]) > 0:
        # interpolate the unvoiced f0
        f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv])
        uv = uv.astype("float")
        uv = np.min(np.array([uv[:-2], uv[1:-1], uv[2:]]), axis=0)
        uv = np.pad(uv, (1, 1))
    return f0, uv
def get_log_f0(f0):
    f0[np.where(f0 == 0)] = 1
    log_f0 = np.log(f0)
    return log_f0
# ========== Methods ==========
def get_f0_features_using_pyin(audio, cfg):
    """Using pyin to extract the f0 feature.
    Args:
        audio
        fs
        win_length
        hop_length
        f0_min
        f0_max
    Returns:
        f0: numpy array of shape (frame_len,)
    """
    f0, voiced_flag, voiced_probs = librosa.pyin(
        y=audio,
        fmin=cfg.f0_min,
        fmax=cfg.f0_max,
        sr=cfg.sample_rate,
        win_length=cfg.win_size,
        hop_length=cfg.hop_size,
    )
    # Set nan to 0
    f0[voiced_flag == False] = 0
    return f0
def get_f0_features_using_parselmouth(audio, cfg, speed=1):
    """Using parselmouth to extract the f0 feature.
    Args:
        audio
        mel_len
        hop_length
        fs
        f0_min
        f0_max
        speed(default=1)
    Returns:
        f0: numpy array of shape (frame_len,)
        pitch_coarse: numpy array of shape (frame_len,)
    """
    hop_size = int(np.round(cfg.hop_size * speed))
    # Calculate the time step for pitch extraction
    time_step = hop_size / cfg.sample_rate * 1000
    f0 = (
        parselmouth.Sound(audio, cfg.sample_rate)
        .to_pitch_ac(
            time_step=time_step / 1000,
            voicing_threshold=0.6,
            pitch_floor=cfg.f0_min,
            pitch_ceiling=cfg.f0_max,
        )
        .selected_array["frequency"]
    )
    # Pad the pitch to the mel_len
    # pad_size = (int(len(audio) // hop_size) - len(f0) + 1) // 2
    # f0 = np.pad(f0, [[pad_size, mel_len - len(f0) - pad_size]], mode="constant")
    # Get the coarse part
    pitch_coarse = f0_to_coarse(f0, cfg.pitch_bin, cfg.f0_min, cfg.f0_max)
    return f0, pitch_coarse
def get_f0_features_using_dio(audio, cfg):
    """Using dio to extract the f0 feature.
    Args:
        audio
        mel_len
        fs
        hop_length
        f0_min
        f0_max
    Returns:
        f0: numpy array of shape (frame_len,)
    """
    # Get the raw f0
    _f0, t = pw.dio(
        audio.astype("double"),
        cfg.sample_rate,
        f0_floor=cfg.f0_min,
        f0_ceil=cfg.f0_max,
        channels_in_octave=2,
        frame_period=(1000 * cfg.hop_size / cfg.sample_rate),
    )
    # Get the f0
    f0 = pw.stonemask(audio.astype("double"), _f0, t, cfg.sample_rate)
    return f0
def get_f0_features_using_harvest(audio, mel_len, fs, hop_length, f0_min, f0_max):
    """Using harvest to extract the f0 feature.
    Args:
        audio
        mel_len
        fs
        hop_length
        f0_min
        f0_max
    Returns:
        f0: numpy array of shape (frame_len,)
    """
    f0, _ = pw.harvest(
        audio.astype("double"),
        fs,
        f0_floor=f0_min,
        f0_ceil=f0_max,
        frame_period=(1000 * hop_length / fs),
    )
    f0 = f0.astype("float")[:mel_len]
    return f0
def get_f0_features_using_crepe(
    audio, mel_len, fs, hop_length, hop_length_new, f0_min, f0_max, threshold=0.3
):
    """Using torchcrepe to extract the f0 feature.
    Args:
        audio
        mel_len
        fs
        hop_length
        hop_length_new
        f0_min
        f0_max
        threshold(default=0.3)
    Returns:
        f0: numpy array of shape (frame_len,)
    """
    # Currently, crepe only supports 16khz audio
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    audio_16k = librosa.resample(audio, orig_sr=fs, target_sr=16000)
    audio_16k_torch = torch.FloatTensor(audio_16k).unsqueeze(0).to(device)
    # Get the raw pitch
    f0, pd = torchcrepe.predict(
        audio_16k_torch,
        16000,
        hop_length_new,
        f0_min,
        f0_max,
        pad=True,
        model="full",
        batch_size=1024,
        device=device,
        return_periodicity=True,
    )
    # Filter, de-silence, set up threshold for unvoiced part
    pd = torchcrepe.filter.median(pd, 3)
    pd = torchcrepe.threshold.Silence(-60.0)(pd, audio_16k_torch, 16000, hop_length_new)
    f0 = torchcrepe.threshold.At(threshold)(f0, pd)
    f0 = torchcrepe.filter.mean(f0, 3)
    # Convert unvoiced part to 0hz
    f0 = torch.where(torch.isnan(f0), torch.full_like(f0, 0), f0)
    # Interpolate f0
    nzindex = torch.nonzero(f0[0]).squeeze()
    f0 = torch.index_select(f0[0], dim=0, index=nzindex).cpu().numpy()
    time_org = 0.005 * nzindex.cpu().numpy()
    time_frame = np.arange(mel_len) * hop_length / fs
    f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
    return f0
def get_f0(audio, cfg):
    if cfg.pitch_extractor == "dio":
        f0 = get_f0_features_using_dio(audio, cfg)
    elif cfg.pitch_extractor == "pyin":
        f0 = get_f0_features_using_pyin(audio, cfg)
    elif cfg.pitch_extractor == "parselmouth":
        f0, _ = get_f0_features_using_parselmouth(audio, cfg)
    # elif cfg.data.f0_extractor == 'cwt': # todo
    return f0
def get_cents(f0_hz):
    """
    F_{cent} = 1200 * log2 (F/440)
    Reference:
        APSIPA'17, Perceptual Evaluation of Singing Quality
    """
    voiced_f0 = f0_hz[f0_hz != 0]
    return 1200 * np.log2(voiced_f0 / 440)
def get_pitch_derivatives(f0_hz):
    """
    f0_hz: (,T)
    """
    f0_cent = get_cents(f0_hz)
    return f0_cent[1:] - f0_cent[:-1]
def get_pitch_sub_median(f0_hz):
    """
    f0_hz: (,T)
    """
    f0_cent = get_cents(f0_hz)
    return f0_cent - np.median(f0_cent)
 | 
 
			
