Spaces:
Sleeping
Sleeping
File size: 1,215 Bytes
f3a5d80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
from langchain.chains.base import Chain
from langchain.schema import BaseRetriever
from langchain.llms import BaseLLM
from langchain.prompts import PromptTemplate
from pydantic import Field
from typing import Dict, Any
class MyCustomMemoryRetrievalChain(Chain):
"""
Custom chain cho phép truyền question, memory.
Lấy docs từ retriever, trộn với prompt, gọi LLM.
"""
llm: BaseLLM = Field(...)
retriever: BaseRetriever = Field(...)
prompt: PromptTemplate = Field(...)
output_key: str = "result"
@property
def input_keys(self) -> list:
return ["question", "memory"]
@property
def output_keys(self) -> list:
return [self.output_key]
def _call(self, inputs: Dict[str, Any], run_manager=None) -> Dict[str, Any]:
question = inputs["question"]
memory = inputs["memory"]
docs = self.retriever.get_relevant_documents(question)
context = "\n".join(doc.page_content for doc in docs)
final_prompt = self.prompt.format(
question=question,
memory=memory,
context=context
)
answer = self.llm(final_prompt)
return {self.output_key: answer}
|