Spaces:
Build error
Build error
Commit
·
3c8aa4a
1
Parent(s):
8468281
update
Browse files- data/streaming_dataset.py +63 -0
- model.py +22 -2
- train.py +43 -17
data/streaming_dataset.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import tiktoken
|
4 |
+
from datasets import load_dataset, concatenate_datasets, interleave_datasets
|
5 |
+
from torch.utils.data import IterableDataset
|
6 |
+
import torch
|
7 |
+
|
8 |
+
class StreamingDataset(IterableDataset):
|
9 |
+
"""Streaming dataset that loads and processes data on the fly"""
|
10 |
+
|
11 |
+
def __init__(self, dataset_configs, block_size=2048, batch_size=12):
|
12 |
+
self.dataset_configs = dataset_configs
|
13 |
+
self.block_size = block_size
|
14 |
+
self.batch_size = batch_size
|
15 |
+
self.enc = tiktoken.get_encoding("gpt2")
|
16 |
+
|
17 |
+
def load_and_process_chunk(self, dataset_name, split="train"):
|
18 |
+
# Load datasets with appropriate configs
|
19 |
+
if dataset_name == "openwebtext":
|
20 |
+
dataset = load_dataset(dataset_name, split=split, streaming=True, trust_remote_code=True)
|
21 |
+
elif dataset_name == "the_pile":
|
22 |
+
dataset = load_dataset("the_pile", split=split, streaming=True)
|
23 |
+
elif dataset_name == "red_pajama":
|
24 |
+
dataset = load_dataset("togethercomputer/RedPajama-Data-1T", split=split, streaming=True)
|
25 |
+
|
26 |
+
for example in dataset:
|
27 |
+
ids = self.enc.encode_ordinary(example['text'])
|
28 |
+
ids.append(self.enc.eot_token)
|
29 |
+
if len(ids) >= self.block_size:
|
30 |
+
# Return chunks of block_size
|
31 |
+
for i in range(0, len(ids) - self.block_size + 1, self.block_size):
|
32 |
+
yield torch.tensor(ids[i:i + self.block_size])
|
33 |
+
|
34 |
+
def __iter__(self):
|
35 |
+
# Interleave datasets with specified weights
|
36 |
+
iterators = []
|
37 |
+
weights = []
|
38 |
+
for config in self.dataset_configs:
|
39 |
+
iterators.append(self.load_and_process_chunk(config['name']))
|
40 |
+
weights.append(config['weight'])
|
41 |
+
|
42 |
+
# Normalize weights
|
43 |
+
weights = np.array(weights) / sum(weights)
|
44 |
+
|
45 |
+
while True:
|
46 |
+
# Randomly select a dataset based on weights
|
47 |
+
dataset_idx = np.random.choice(len(iterators), p=weights)
|
48 |
+
try:
|
49 |
+
batch = []
|
50 |
+
for _ in range(self.batch_size):
|
51 |
+
batch.append(next(iterators[dataset_idx]))
|
52 |
+
yield torch.stack(batch)
|
53 |
+
except StopIteration:
|
54 |
+
# Restart iterator if it's exhausted
|
55 |
+
iterators[dataset_idx] = self.load_and_process_chunk(self.dataset_configs[dataset_idx]['name'])
|
56 |
+
continue
|
57 |
+
|
58 |
+
# Example usage:
|
59 |
+
dataset_configs = [
|
60 |
+
{'name': 'openwebtext', 'weight': 0.4},
|
61 |
+
{'name': 'the_pile', 'weight': 0.3},
|
62 |
+
{'name': 'red_pajama', 'weight': 0.3}
|
63 |
+
]
|
model.py
CHANGED
@@ -114,6 +114,7 @@ class GPTConfig:
|
|
114 |
n_embd: int = 768
|
115 |
dropout: float = 0.0
|
116 |
bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
|
|
|
117 |
|
118 |
class GPT(nn.Module):
|
119 |
|
@@ -144,6 +145,9 @@ class GPT(nn.Module):
|
|
144 |
if pn.endswith('c_proj.weight'):
|
145 |
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
|
146 |
|
|
|
|
|
|
|
147 |
# report number of parameters
|
148 |
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
|
149 |
|
@@ -177,8 +181,24 @@ class GPT(nn.Module):
|
|
177 |
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
|
178 |
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
|
179 |
x = self.transformer.drop(tok_emb + pos_emb)
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
x = self.transformer.ln_f(x)
|
183 |
|
184 |
if targets is not None:
|
|
|
114 |
n_embd: int = 768
|
115 |
dropout: float = 0.0
|
116 |
bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
|
117 |
+
gradient_checkpointing: bool = False # Enable gradient checkpointing for memory efficiency
|
118 |
|
119 |
class GPT(nn.Module):
|
120 |
|
|
|
145 |
if pn.endswith('c_proj.weight'):
|
146 |
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
|
147 |
|
148 |
+
# Enable gradient checkpointing if configured
|
149 |
+
self.gradient_checkpointing = getattr(config, 'gradient_checkpointing', False)
|
150 |
+
|
151 |
# report number of parameters
|
152 |
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
|
153 |
|
|
|
181 |
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
|
182 |
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
|
183 |
x = self.transformer.drop(tok_emb + pos_emb)
|
184 |
+
|
185 |
+
if self.gradient_checkpointing and self.training:
|
186 |
+
# Use gradient checkpointing for transformer layers
|
187 |
+
def create_custom_forward(module):
|
188 |
+
def custom_forward(*args):
|
189 |
+
return module(*args)
|
190 |
+
return custom_forward
|
191 |
+
|
192 |
+
x = torch.utils.checkpoint.checkpoint_sequential(
|
193 |
+
self.transformer.h,
|
194 |
+
len(self.transformer.h),
|
195 |
+
create_custom_forward(self.transformer.h[0]),
|
196 |
+
x
|
197 |
+
)
|
198 |
+
else:
|
199 |
+
for block in self.transformer.h:
|
200 |
+
x = block(x)
|
201 |
+
|
202 |
x = self.transformer.ln_f(x)
|
203 |
|
204 |
if targets is not None:
|
train.py
CHANGED
@@ -47,13 +47,13 @@ wandb_run_name = 'gpt2' # 'run' + str(time.time())
|
|
47 |
dataset = 'openwebtext'
|
48 |
gradient_accumulation_steps = 5 * 8 # used to simulate larger batch sizes
|
49 |
batch_size = 12 # if gradient_accumulation_steps > 1, this is the micro-batch size
|
50 |
-
block_size =
|
51 |
-
# model
|
52 |
-
n_layer = 12
|
53 |
-
n_head = 12
|
54 |
-
n_embd = 768
|
55 |
-
dropout = 0.0
|
56 |
-
bias = False
|
57 |
# adamw optimizer
|
58 |
learning_rate = 6e-4 # max learning rate
|
59 |
max_iters = 600000 # total number of training iterations
|
@@ -70,8 +70,11 @@ min_lr = 6e-5 # minimum learning rate, should be ~= learning_rate/10 per Chinchi
|
|
70 |
backend = 'nccl' # 'nccl', 'gloo', etc.
|
71 |
# system
|
72 |
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1' etc., or try 'mps' on macbooks
|
73 |
-
dtype = '
|
74 |
compile = True # use PyTorch 2.0 to compile the model to be faster
|
|
|
|
|
|
|
75 |
# -----------------------------------------------------------------------------
|
76 |
config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
|
77 |
exec(open('configurator.py').read()) # overrides from command line or config file
|
@@ -111,20 +114,43 @@ device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.aut
|
|
111 |
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
112 |
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
113 |
|
114 |
-
#
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
def get_batch(split):
|
117 |
-
# We recreate np.memmap every batch to avoid a memory leak, as per
|
118 |
-
# https://stackoverflow.com/questions/45132940/numpy-memmap-memory-usage-want-to-iterate-once/61472122#61472122
|
119 |
if split == 'train':
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
else:
|
|
|
122 |
data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r')
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
126 |
if device_type == 'cuda':
|
127 |
-
# pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True)
|
128 |
x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
|
129 |
else:
|
130 |
x, y = x.to(device), y.to(device)
|
|
|
47 |
dataset = 'openwebtext'
|
48 |
gradient_accumulation_steps = 5 * 8 # used to simulate larger batch sizes
|
49 |
batch_size = 12 # if gradient_accumulation_steps > 1, this is the micro-batch size
|
50 |
+
block_size = 2048 # increased context length
|
51 |
+
# model (1.3B parameters)
|
52 |
+
n_layer = 24 # scaled up from 12
|
53 |
+
n_head = 16 # scaled up from 12
|
54 |
+
n_embd = 1024 # scaled up from 768
|
55 |
+
dropout = 0.0 # for pretraining 0 is good, for finetuning try 0.1+
|
56 |
+
bias = False # do we use bias inside LayerNorm and Linear layers?
|
57 |
# adamw optimizer
|
58 |
learning_rate = 6e-4 # max learning rate
|
59 |
max_iters = 600000 # total number of training iterations
|
|
|
70 |
backend = 'nccl' # 'nccl', 'gloo', etc.
|
71 |
# system
|
72 |
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1' etc., or try 'mps' on macbooks
|
73 |
+
dtype = 'float16' # use fp16 training with gradient scaling
|
74 |
compile = True # use PyTorch 2.0 to compile the model to be faster
|
75 |
+
# mixed precision and memory optimization
|
76 |
+
use_amp = True # use automatic mixed precision (fp16)
|
77 |
+
gradient_checkpointing = True # trade compute for memory
|
78 |
# -----------------------------------------------------------------------------
|
79 |
config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
|
80 |
exec(open('configurator.py').read()) # overrides from command line or config file
|
|
|
114 |
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
115 |
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
116 |
|
117 |
+
# streaming data loader
|
118 |
+
from data.streaming_dataset import StreamingDataset
|
119 |
+
|
120 |
+
dataset_configs = [
|
121 |
+
{'name': 'openwebtext', 'weight': 0.4},
|
122 |
+
{'name': 'the_pile', 'weight': 0.3},
|
123 |
+
{'name': 'red_pajama', 'weight': 0.3}
|
124 |
+
]
|
125 |
+
|
126 |
+
train_dataset = StreamingDataset(dataset_configs, block_size=block_size, batch_size=batch_size)
|
127 |
+
train_loader = torch.utils.data.DataLoader(
|
128 |
+
train_dataset,
|
129 |
+
batch_size=None, # batch size is handled by the dataset
|
130 |
+
num_workers=4,
|
131 |
+
pin_memory=True
|
132 |
+
)
|
133 |
+
train_iter = iter(train_loader)
|
134 |
+
|
135 |
def get_batch(split):
|
|
|
|
|
136 |
if split == 'train':
|
137 |
+
try:
|
138 |
+
batch = next(train_iter)
|
139 |
+
except StopIteration:
|
140 |
+
# Reset iterator when exhausted
|
141 |
+
train_iter = iter(train_loader)
|
142 |
+
batch = next(train_iter)
|
143 |
+
|
144 |
+
x = batch[:, :-1] # all but last token
|
145 |
+
y = batch[:, 1:] # all but first token
|
146 |
else:
|
147 |
+
# For validation, we'll keep using the original approach with memmap files
|
148 |
data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r')
|
149 |
+
ix = torch.randint(len(data) - block_size, (batch_size,))
|
150 |
+
x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix])
|
151 |
+
y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix])
|
152 |
+
|
153 |
if device_type == 'cuda':
|
|
|
154 |
x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
|
155 |
else:
|
156 |
x, y = x.to(device), y.to(device)
|