qorgh346 commited on
Commit
80f4fb3
1 Parent(s): b7adfbf

1023-commit

Browse files
Files changed (3) hide show
  1. app.py +162 -0
  2. htmlTemplates.py +44 -0
  3. requirements.txt +13 -0
app.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from dotenv import load_dotenv
3
+ from PyPDF2 import PdfReader
4
+ from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
5
+ from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
6
+ from langchain.vectorstores import FAISS, Chroma
7
+ from langchain.embeddings import HuggingFaceEmbeddings # General embeddings from HuggingFace models.
8
+ from langchain.chat_models import ChatOpenAI
9
+ from langchain.memory import ConversationBufferMemory
10
+ from langchain.chains import ConversationalRetrievalChain
11
+ from htmlTemplates import css, bot_template, user_template
12
+ from langchain.llms import HuggingFaceHub, LlamaCpp, CTransformers # For loading transformer models.
13
+ from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader
14
+ from tempfile import NamedTemporaryFile
15
+ import os
16
+
17
+
18
+ def get_pdf_text(pdf_docs):
19
+ with NamedTemporaryFile() as temp_file:
20
+ temp_file.write(pdf_docs.getvalue())
21
+ temp_file.seek(0)
22
+ pdf_loader = PyPDFLoader(temp_file.name)
23
+ # print('pdf_loader = ', pdf_loader)
24
+ pdf_doc = pdf_loader.load()
25
+ # print('pdf_doc = ',pdf_doc)
26
+ return pdf_doc
27
+
28
+
29
+ def get_text_file(docs):
30
+ with NamedTemporaryFile() as temp_file:
31
+ temp_file.write(docs.getvalue())
32
+ temp_file.seek(0)
33
+ text_loader = TextLoader(temp_file.name)
34
+ text_doc = text_loader.load()
35
+
36
+ return text_doc
37
+
38
+
39
+ def get_csv_file(docs):
40
+ with NamedTemporaryFile() as temp_file:
41
+ temp_file.write(docs.getvalue())
42
+ temp_file.seek(0)
43
+ text_loader = CSVLoader(temp_file.name)
44
+ text_doc = text_loader.load()
45
+
46
+ return text_doc
47
+
48
+
49
+ def get_json_file(docs):
50
+ with NamedTemporaryFile() as temp_file:
51
+ temp_file.write(docs.getvalue())
52
+ temp_file.seek(0)
53
+ json_loader = JSONLoader(temp_file.name,
54
+ jq_schema='.scans[].relationships',
55
+ text_content=False)
56
+ json_doc = json_loader.load()
57
+
58
+ return json_doc
59
+
60
+
61
+ def get_text_chunks(documents):
62
+ text_splitter = RecursiveCharacterTextSplitter(
63
+ chunk_size=1000,
64
+ chunk_overlap=200,
65
+ length_function=len
66
+ )
67
+
68
+ documents = text_splitter.split_documents(documents)
69
+ return documents
70
+
71
+
72
+ def get_vectorstore(text_chunks):
73
+ # Load the desired embeddings model.
74
+
75
+ embeddings = OpenAIEmbeddings()
76
+ vectorstore = FAISS.from_documents(text_chunks, embeddings)
77
+
78
+ return vectorstore
79
+
80
+
81
+ def get_conversation_chain(vectorstore):
82
+ llm = ChatOpenAI()
83
+ memory = ConversationBufferMemory(
84
+ memory_key='chat_history', return_messages=True)
85
+ conversation_chain = ConversationalRetrievalChain.from_llm(
86
+ llm=llm,
87
+ retriever=vectorstore.as_retriever(),
88
+ memory=memory
89
+ )
90
+ return conversation_chain
91
+
92
+
93
+ def handle_userinput(user_question):
94
+ response = st.session_state.conversation({'question': user_question})
95
+ st.session_state.chat_history = response['chat_history']
96
+
97
+ for i, message in enumerate(st.session_state.chat_history):
98
+ if i % 2 == 0:
99
+ st.write(user_template.replace(
100
+ "{{MSG}}", message.content), unsafe_allow_html=True)
101
+ else:
102
+ st.write(bot_template.replace(
103
+ "{{MSG}}", message.content), unsafe_allow_html=True)
104
+
105
+
106
+ def main():
107
+ load_dotenv()
108
+ st.set_page_config(page_title="Chat with multiple PDFs",
109
+ page_icon=":books:")
110
+ st.write(css, unsafe_allow_html=True)
111
+
112
+ if "conversation" not in st.session_state:
113
+ st.session_state.conversation = None
114
+ if "chat_history" not in st.session_state:
115
+ st.session_state.chat_history = None
116
+
117
+ st.header("Chat with multiple PDFs :books:")
118
+ user_question = st.text_input("Ask a question about your documents:")
119
+ if user_question:
120
+ handle_userinput(user_question)
121
+
122
+ with st.sidebar:
123
+ openai_key = st.text_input("Paste your OpenAI API key (sk-...)")
124
+ if openai_key:
125
+ os.environ["OPENAI_API_KEY"] = openai_key
126
+
127
+ st.subheader("Your documents")
128
+ docs = st.file_uploader(
129
+ "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
130
+ if st.button("Process"):
131
+ with st.spinner("Processing"):
132
+ # get pdf text
133
+ doc_list = []
134
+
135
+ for file in docs:
136
+ print('file - type : ', file.type)
137
+ if file.type == 'text/plain':
138
+ # file is .txt
139
+ doc_list.extend(get_text_file(file))
140
+ elif file.type in ['application/octet-stream', 'application/pdf']:
141
+ # file is .pdf
142
+ doc_list.extend(get_pdf_text(file))
143
+ elif file.type == 'text/csv':
144
+ # file is .csv
145
+ doc_list.extend(get_csv_file(file))
146
+ elif file.type == 'application/json':
147
+ # file is .json
148
+ doc_list.extend(get_json_file(file))
149
+
150
+ # get the text chunks
151
+ text_chunks = get_text_chunks(doc_list)
152
+
153
+ # create vector store
154
+ vectorstore = get_vectorstore(text_chunks)
155
+
156
+ # create conversation chain
157
+ st.session_state.conversation = get_conversation_chain(
158
+ vectorstore)
159
+
160
+
161
+ if __name__ == '__main__':
162
+ main()
htmlTemplates.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ css = '''
2
+ <style>
3
+ .chat-message {
4
+ padding: 1.5rem; border-radius: 0.5rem; margin-bottom: 1rem; display: flex
5
+ }
6
+ .chat-message.user {
7
+ background-color: #2b313e
8
+ }
9
+ .chat-message.bot {
10
+ background-color: #475063
11
+ }
12
+ .chat-message .avatar {
13
+ width: 20%;
14
+ }
15
+ .chat-message .avatar img {
16
+ max-width: 78px;
17
+ max-height: 78px;
18
+ border-radius: 50%;
19
+ object-fit: cover;
20
+ }
21
+ .chat-message .message {
22
+ width: 80%;
23
+ padding: 0 1.5rem;
24
+ color: #fff;
25
+ }
26
+ '''
27
+
28
+ bot_template = '''
29
+ <div class="chat-message bot">
30
+ <div class="avatar">
31
+ <img src="https://i.ibb.co/cN0nmSj/Screenshot-2023-05-28-at-02-37-21.png" style="max-height: 78px; max-width: 78px; border-radius: 50%; object-fit: cover;">
32
+ </div>
33
+ <div class="message">{{MSG}}</div>
34
+ </div>
35
+ '''
36
+
37
+ user_template = '''
38
+ <div class="chat-message user">
39
+ <div class="avatar">
40
+ <img src="https://i.ibb.co/rdZC7LZ/Photo-logo-1.png">
41
+ </div>
42
+ <div class="message">{{MSG}}</div>
43
+ </div>
44
+ '''
requirements.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ langchain
2
+ llama-cpp-python
3
+ PyPDF2==3.0.1
4
+ faiss-cpu==1.7.4
5
+ ctransformers
6
+ pypdf
7
+ chromadb
8
+ tiktoken
9
+ pysqlite3-binary
10
+ streamlit-extras
11
+ InstructorEmbedding
12
+ sentence-transformers
13
+ jq