Spaces:
Runtime error
Runtime error
| # pytorch_diffusion + derived encoder decoder | |
| import math | |
| import torch | |
| import torch.nn as nn | |
| import numpy as np | |
| def get_timestep_embedding(timesteps, embedding_dim): | |
| """ | |
| This matches the implementation in Denoising Diffusion Probabilistic Models: | |
| From Fairseq. | |
| Build sinusoidal embeddings. | |
| This matches the implementation in tensor2tensor, but differs slightly | |
| from the description in Section 3.5 of "Attention Is All You Need". | |
| """ | |
| assert len(timesteps.shape) == 1 | |
| half_dim = embedding_dim // 2 | |
| emb = math.log(10000) / (half_dim - 1) | |
| emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) | |
| emb = emb.to(device=timesteps.device) | |
| emb = timesteps.float()[:, None] * emb[None, :] | |
| emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
| if embedding_dim % 2 == 1: # zero pad | |
| emb = torch.nn.functional.pad(emb, (0,1,0,0)) | |
| return emb | |
| def nonlinearity(x): | |
| # swish | |
| return x*torch.sigmoid(x) | |
| def Normalize(in_channels): | |
| return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
| class Upsample(nn.Module): | |
| def __init__(self, in_channels, with_conv): | |
| super().__init__() | |
| self.with_conv = with_conv | |
| if self.with_conv: | |
| self.conv = torch.nn.Conv2d(in_channels, | |
| in_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| def forward(self, x): | |
| x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") | |
| if self.with_conv: | |
| x = self.conv(x) | |
| return x | |
| class Upsample1d(Upsample): | |
| def __init__(self, in_channels, with_conv): | |
| super().__init__(in_channels, with_conv) | |
| if self.with_conv: | |
| self.conv = torch.nn.Conv1d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) | |
| class Downsample(nn.Module): | |
| def __init__(self, in_channels, with_conv): | |
| super().__init__() | |
| self.with_conv = with_conv | |
| if self.with_conv: | |
| # no asymmetric padding in torch conv, must do it ourselves | |
| self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) | |
| self.pad = (0, 1, 0, 1) | |
| else: | |
| self.avg_pool = nn.AvgPool2d(kernel_size=2, stride=2) | |
| def forward(self, x): | |
| if self.with_conv: # bp: check self.avgpool and self.pad | |
| x = torch.nn.functional.pad(x, self.pad, mode="constant", value=0) | |
| x = self.conv(x) | |
| else: | |
| x = self.avg_pool(x) | |
| return x | |
| class Downsample1d(Downsample): | |
| def __init__(self, in_channels, with_conv): | |
| super().__init__(in_channels, with_conv) | |
| if self.with_conv: | |
| # no asymmetric padding in torch conv, must do it ourselves | |
| # TODO: can we replace it just with conv2d with padding 1? | |
| self.conv = torch.nn.Conv1d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) | |
| self.pad = (1, 1) | |
| else: | |
| self.avg_pool = nn.AvgPool1d(kernel_size=2, stride=2) | |
| class ResnetBlock(nn.Module): | |
| def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, | |
| dropout, temb_channels=512): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| out_channels = in_channels if out_channels is None else out_channels | |
| self.out_channels = out_channels | |
| self.use_conv_shortcut = conv_shortcut | |
| self.norm1 = Normalize(in_channels) | |
| self.conv1 = torch.nn.Conv2d(in_channels, | |
| out_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| if temb_channels > 0: | |
| self.temb_proj = torch.nn.Linear(temb_channels, | |
| out_channels) | |
| self.norm2 = Normalize(out_channels) | |
| self.dropout = torch.nn.Dropout(dropout) | |
| self.conv2 = torch.nn.Conv2d(out_channels, | |
| out_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| if self.in_channels != self.out_channels: | |
| if self.use_conv_shortcut: | |
| self.conv_shortcut = torch.nn.Conv2d(in_channels, | |
| out_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| else: | |
| self.nin_shortcut = torch.nn.Conv2d(in_channels, | |
| out_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0) | |
| def forward(self, x, temb): | |
| h = x | |
| h = self.norm1(h) | |
| h = nonlinearity(h) | |
| h = self.conv1(h) | |
| if temb is not None: | |
| h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None] | |
| h = self.norm2(h) | |
| h = nonlinearity(h) | |
| h = self.dropout(h) | |
| h = self.conv2(h) | |
| if self.in_channels != self.out_channels: | |
| if self.use_conv_shortcut: | |
| x = self.conv_shortcut(x) | |
| else: | |
| x = self.nin_shortcut(x) | |
| return x+h | |
| class ResnetBlock1d(ResnetBlock): | |
| def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, | |
| dropout, temb_channels=512): | |
| super().__init__(in_channels=in_channels, out_channels=out_channels, | |
| conv_shortcut=conv_shortcut, dropout=dropout, temb_channels=temb_channels) | |
| # redefining different elements (forward is goint to be the same as in RenetBlock) | |
| if temb_channels > 0: | |
| raise NotImplementedError('go to ResnetBlock and figure out how to deal with it in forward') | |
| self.temb_proj = torch.nn.Linear(temb_channels, out_channels) | |
| self.conv1 = torch.nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
| self.conv2 = torch.nn.Conv1d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
| if self.in_channels != self.out_channels: | |
| if self.use_conv_shortcut: | |
| self.conv_shortcut = torch.nn.Conv1d(in_channels, out_channels, kernel_size=3, | |
| stride=1, padding=1) | |
| else: | |
| self.nin_shortcut = torch.nn.Conv1d(in_channels, out_channels, kernel_size=1, | |
| stride=1, padding=0) | |
| class AttnBlock(nn.Module): | |
| def __init__(self, in_channels): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.norm = Normalize(in_channels) | |
| self.q = torch.nn.Conv2d(in_channels, | |
| in_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0) | |
| self.k = torch.nn.Conv2d(in_channels, | |
| in_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0) | |
| self.v = torch.nn.Conv2d(in_channels, | |
| in_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0) | |
| self.proj_out = torch.nn.Conv2d(in_channels, | |
| in_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0) | |
| def forward(self, x): | |
| h_ = x | |
| h_ = self.norm(h_) | |
| q = self.q(h_) | |
| k = self.k(h_) | |
| v = self.v(h_) | |
| # compute attention | |
| b,c,h,w = q.shape | |
| q = q.reshape(b,c,h*w) | |
| q = q.permute(0,2,1) # b,hw,c | |
| k = k.reshape(b,c,h*w) # b,c,hw | |
| w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] | |
| w_ = w_ * (int(c)**(-0.5)) | |
| w_ = torch.nn.functional.softmax(w_, dim=2) | |
| # attend to values | |
| v = v.reshape(b,c,h*w) | |
| w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q) | |
| h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] | |
| h_ = h_.reshape(b,c,h,w) | |
| h_ = self.proj_out(h_) | |
| return x+h_ | |
| class AttnBlock1d(nn.Module): | |
| def __init__(self, in_channels): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.norm = Normalize(in_channels) | |
| self.q = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
| self.k = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
| self.v = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
| self.proj_out = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
| def forward(self, x): | |
| h_ = x | |
| h_ = self.norm(h_) | |
| q = self.q(h_) | |
| k = self.k(h_) | |
| v = self.v(h_) | |
| # compute attention | |
| b, c, t = q.shape | |
| q = q.permute(0, 2, 1) # b,t,c | |
| w_ = torch.bmm(q, k) # b,t,t w[b,i,j]=sum_c q[b,i,c]k[b,c,j] | |
| w_ = w_ * (int(c) ** (-0.5)) | |
| w_ = torch.nn.functional.softmax(w_, dim=2) | |
| # attend to values | |
| w_ = w_.permute(0, 2, 1) # b,t,t (first t of k, second of q) | |
| h_ = torch.bmm(v, w_) # b,c,t (t of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] | |
| h_ = self.proj_out(h_) | |
| return x + h_ | |
| class Model(nn.Module): | |
| def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, | |
| attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, | |
| resolution, use_timestep=True): | |
| super().__init__() | |
| self.ch = ch | |
| self.temb_ch = self.ch*4 | |
| self.num_resolutions = len(ch_mult) | |
| self.num_res_blocks = num_res_blocks | |
| self.resolution = resolution | |
| self.in_channels = in_channels | |
| self.use_timestep = use_timestep | |
| if self.use_timestep: | |
| # timestep embedding | |
| self.temb = nn.Module() | |
| self.temb.dense = nn.ModuleList([ | |
| torch.nn.Linear(self.ch, | |
| self.temb_ch), | |
| torch.nn.Linear(self.temb_ch, | |
| self.temb_ch), | |
| ]) | |
| # downsampling | |
| self.conv_in = torch.nn.Conv2d(in_channels, | |
| self.ch, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| curr_res = resolution | |
| in_ch_mult = (1,)+tuple(ch_mult) | |
| self.down = nn.ModuleList() | |
| for i_level in range(self.num_resolutions): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_in = ch*in_ch_mult[i_level] | |
| block_out = ch*ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks): | |
| block.append(ResnetBlock(in_channels=block_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout)) | |
| block_in = block_out | |
| if curr_res in attn_resolutions: | |
| attn.append(AttnBlock(block_in)) | |
| down = nn.Module() | |
| down.block = block | |
| down.attn = attn | |
| if i_level != self.num_resolutions-1: | |
| down.downsample = Downsample(block_in, resamp_with_conv) | |
| curr_res = curr_res // 2 | |
| self.down.append(down) | |
| # middle | |
| self.mid = nn.Module() | |
| self.mid.block_1 = ResnetBlock(in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout) | |
| self.mid.attn_1 = AttnBlock(block_in) | |
| self.mid.block_2 = ResnetBlock(in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout) | |
| # upsampling | |
| self.up = nn.ModuleList() | |
| for i_level in reversed(range(self.num_resolutions)): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_out = ch*ch_mult[i_level] | |
| skip_in = ch*ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks+1): | |
| if i_block == self.num_res_blocks: | |
| skip_in = ch*in_ch_mult[i_level] | |
| block.append(ResnetBlock(in_channels=block_in+skip_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout)) | |
| block_in = block_out | |
| if curr_res in attn_resolutions: | |
| attn.append(AttnBlock(block_in)) | |
| up = nn.Module() | |
| up.block = block | |
| up.attn = attn | |
| if i_level != 0: | |
| up.upsample = Upsample(block_in, resamp_with_conv) | |
| curr_res = curr_res * 2 | |
| self.up.insert(0, up) # prepend to get consistent order | |
| # end | |
| self.norm_out = Normalize(block_in) | |
| self.conv_out = torch.nn.Conv2d(block_in, | |
| out_ch, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| def forward(self, x, t=None): | |
| #assert x.shape[2] == x.shape[3] == self.resolution | |
| if self.use_timestep: | |
| # timestep embedding | |
| assert t is not None | |
| temb = get_timestep_embedding(t, self.ch) | |
| temb = self.temb.dense[0](temb) | |
| temb = nonlinearity(temb) | |
| temb = self.temb.dense[1](temb) | |
| else: | |
| temb = None | |
| # downsampling | |
| hs = [self.conv_in(x)] | |
| for i_level in range(self.num_resolutions): | |
| for i_block in range(self.num_res_blocks): | |
| h = self.down[i_level].block[i_block](hs[-1], temb) | |
| if len(self.down[i_level].attn) > 0: | |
| h = self.down[i_level].attn[i_block](h) | |
| hs.append(h) | |
| if i_level != self.num_resolutions-1: | |
| hs.append(self.down[i_level].downsample(hs[-1])) | |
| # middle | |
| h = hs[-1] | |
| h = self.mid.block_1(h, temb) | |
| h = self.mid.attn_1(h) | |
| h = self.mid.block_2(h, temb) | |
| # upsampling | |
| for i_level in reversed(range(self.num_resolutions)): | |
| for i_block in range(self.num_res_blocks+1): | |
| h = self.up[i_level].block[i_block]( | |
| torch.cat([h, hs.pop()], dim=1), temb) | |
| if len(self.up[i_level].attn) > 0: | |
| h = self.up[i_level].attn[i_block](h) | |
| if i_level != 0: | |
| h = self.up[i_level].upsample(h) | |
| # end | |
| h = self.norm_out(h) | |
| h = nonlinearity(h) | |
| h = self.conv_out(h) | |
| return h | |
| class Encoder(nn.Module): | |
| def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, | |
| attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, | |
| resolution, z_channels, double_z=True, **ignore_kwargs): | |
| super().__init__() | |
| self.ch = ch | |
| self.temb_ch = 0 | |
| self.num_resolutions = len(ch_mult) | |
| self.num_res_blocks = num_res_blocks | |
| self.resolution = resolution | |
| self.in_channels = in_channels | |
| # downsampling | |
| self.conv_in = torch.nn.Conv2d(in_channels, | |
| self.ch, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| curr_res = resolution | |
| in_ch_mult = (1,)+tuple(ch_mult) | |
| self.down = nn.ModuleList() | |
| for i_level in range(self.num_resolutions): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_in = ch*in_ch_mult[i_level] | |
| block_out = ch*ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks): | |
| block.append(ResnetBlock(in_channels=block_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout)) | |
| block_in = block_out | |
| if curr_res in attn_resolutions: | |
| attn.append(AttnBlock(block_in)) | |
| down = nn.Module() | |
| down.block = block | |
| down.attn = attn | |
| if i_level != self.num_resolutions-1: | |
| down.downsample = Downsample(block_in, resamp_with_conv) | |
| curr_res = curr_res // 2 | |
| self.down.append(down) | |
| # middle | |
| self.mid = nn.Module() | |
| self.mid.block_1 = ResnetBlock(in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout) | |
| self.mid.attn_1 = AttnBlock(block_in) | |
| self.mid.block_2 = ResnetBlock(in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout) | |
| # end | |
| self.norm_out = Normalize(block_in) | |
| self.conv_out = torch.nn.Conv2d(block_in, | |
| 2*z_channels if double_z else z_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| def forward(self, x): | |
| #assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution) | |
| # timestep embedding | |
| temb = None | |
| # downsampling | |
| hs = [self.conv_in(x)] | |
| for i_level in range(self.num_resolutions): | |
| for i_block in range(self.num_res_blocks): | |
| h = self.down[i_level].block[i_block](hs[-1], temb) | |
| if len(self.down[i_level].attn) > 0: | |
| h = self.down[i_level].attn[i_block](h) | |
| hs.append(h) | |
| if i_level != self.num_resolutions-1: | |
| hs.append(self.down[i_level].downsample(hs[-1])) | |
| # middle | |
| h = hs[-1] | |
| h = self.mid.block_1(h, temb) | |
| h = self.mid.attn_1(h) | |
| h = self.mid.block_2(h, temb) | |
| # end | |
| h = self.norm_out(h) | |
| h = nonlinearity(h) | |
| h = self.conv_out(h) | |
| return h | |
| class Encoder1d(Encoder): | |
| def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, | |
| attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, | |
| resolution, z_channels, double_z=True, **ignore_kwargs): | |
| super().__init__(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, | |
| attn_resolutions=attn_resolutions, dropout=dropout, | |
| resamp_with_conv=resamp_with_conv, | |
| in_channels=in_channels, resolution=resolution, z_channels=z_channels, | |
| double_z=double_z, **ignore_kwargs) | |
| self.ch = ch | |
| self.temb_ch = 0 | |
| self.num_resolutions = len(ch_mult) | |
| self.num_res_blocks = num_res_blocks | |
| self.resolution = resolution | |
| self.in_channels = in_channels | |
| # downsampling | |
| self.conv_in = torch.nn.Conv1d(in_channels, | |
| self.ch, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| curr_res = resolution | |
| in_ch_mult = (1,)+tuple(ch_mult) | |
| self.down = nn.ModuleList() | |
| for i_level in range(self.num_resolutions): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_in = ch*in_ch_mult[i_level] | |
| block_out = ch*ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks): | |
| block.append(ResnetBlock1d(in_channels=block_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout)) | |
| block_in = block_out | |
| if curr_res in attn_resolutions: | |
| attn.append(AttnBlock1d(block_in)) | |
| down = nn.Module() | |
| down.block = block | |
| down.attn = attn | |
| if i_level != self.num_resolutions-1: | |
| down.downsample = Downsample1d(block_in, resamp_with_conv) | |
| curr_res = curr_res // 2 | |
| self.down.append(down) | |
| # middle | |
| self.mid = nn.Module() | |
| self.mid.block_1 = ResnetBlock1d(in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout) | |
| self.mid.attn_1 = AttnBlock1d(block_in) | |
| self.mid.block_2 = ResnetBlock1d(in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout) | |
| # end | |
| self.norm_out = Normalize(block_in) | |
| self.conv_out = torch.nn.Conv1d(block_in, | |
| 2*z_channels if double_z else z_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| class Decoder(nn.Module): | |
| def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, | |
| attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, | |
| resolution, z_channels, give_pre_end=False, **ignorekwargs): | |
| super().__init__() | |
| self.ch = ch | |
| self.temb_ch = 0 | |
| self.num_resolutions = len(ch_mult) | |
| self.num_res_blocks = num_res_blocks | |
| self.resolution = resolution | |
| self.in_channels = in_channels | |
| self.give_pre_end = give_pre_end | |
| # compute in_ch_mult, block_in and curr_res at lowest res | |
| in_ch_mult = (1,)+tuple(ch_mult) | |
| block_in = ch*ch_mult[self.num_resolutions-1] | |
| curr_res = resolution // 2**(self.num_resolutions-1) | |
| # self.z_shape = (1,z_channels,curr_res,curr_res) | |
| # print("Working with z of shape {} = {} dimensions.".format( | |
| # self.z_shape, np.prod(self.z_shape))) | |
| # z to block_in | |
| self.conv_in = torch.nn.Conv2d(z_channels, | |
| block_in, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| # middle | |
| self.mid = nn.Module() | |
| self.mid.block_1 = ResnetBlock(in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout) | |
| self.mid.attn_1 = AttnBlock(block_in) | |
| self.mid.block_2 = ResnetBlock(in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout) | |
| # upsampling | |
| self.up = nn.ModuleList() | |
| for i_level in reversed(range(self.num_resolutions)): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_out = ch*ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks+1): | |
| block.append(ResnetBlock(in_channels=block_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout)) | |
| block_in = block_out | |
| if curr_res in attn_resolutions: | |
| attn.append(AttnBlock(block_in)) | |
| up = nn.Module() | |
| up.block = block | |
| up.attn = attn | |
| if i_level != 0: | |
| up.upsample = Upsample(block_in, resamp_with_conv) | |
| curr_res = curr_res * 2 | |
| self.up.insert(0, up) # prepend to get consistent order | |
| # end | |
| self.norm_out = Normalize(block_in) | |
| self.conv_out = torch.nn.Conv2d(block_in, | |
| out_ch, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| def forward(self, z): | |
| #assert z.shape[1:] == self.z_shape[1:] | |
| self.last_z_shape = z.shape | |
| # timestep embedding | |
| temb = None | |
| # z to block_in | |
| h = self.conv_in(z) | |
| # middle | |
| h = self.mid.block_1(h, temb) | |
| h = self.mid.attn_1(h) | |
| h = self.mid.block_2(h, temb) | |
| # upsampling | |
| for i_level in reversed(range(self.num_resolutions)): | |
| for i_block in range(self.num_res_blocks+1): | |
| h = self.up[i_level].block[i_block](h, temb) | |
| if len(self.up[i_level].attn) > 0: | |
| h = self.up[i_level].attn[i_block](h) | |
| if i_level != 0: | |
| h = self.up[i_level].upsample(h) | |
| # end | |
| if self.give_pre_end: | |
| return h | |
| h = self.norm_out(h) | |
| h = nonlinearity(h) | |
| h = self.conv_out(h) | |
| return h | |
| class Decoder1d(Decoder): | |
| def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, | |
| attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, | |
| resolution, z_channels, give_pre_end=False, **ignorekwargs): | |
| super().__init__(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, | |
| attn_resolutions=attn_resolutions, dropout=dropout, | |
| resamp_with_conv=resamp_with_conv, | |
| in_channels=in_channels, resolution=resolution, z_channels=z_channels, | |
| give_pre_end=give_pre_end, **ignorekwargs) | |
| self.ch = ch | |
| self.temb_ch = 0 | |
| self.num_resolutions = len(ch_mult) | |
| self.num_res_blocks = num_res_blocks | |
| self.resolution = resolution | |
| self.in_channels = in_channels | |
| self.give_pre_end = give_pre_end | |
| # compute in_ch_mult, block_in and curr_res at lowest res | |
| in_ch_mult = (1,) + tuple(ch_mult) | |
| block_in = ch * ch_mult[self.num_resolutions-1] | |
| curr_res = resolution // 2**(self.num_resolutions-1) | |
| # self.z_shape = (1,z_channels,curr_res,curr_res) | |
| # print("Working with z of shape {} = {} dimensions.".format( | |
| # self.z_shape, np.prod(self.z_shape))) | |
| # z to block_in | |
| self.conv_in = torch.nn.Conv1d(z_channels, block_in, kernel_size=3, stride=1, padding=1) | |
| # middle | |
| self.mid = nn.Module() | |
| self.mid.block_1 = ResnetBlock1d(in_channels=block_in, out_channels=block_in, | |
| temb_channels=self.temb_ch, dropout=dropout) | |
| self.mid.attn_1 = AttnBlock1d(block_in) | |
| self.mid.block_2 = ResnetBlock1d(in_channels=block_in, out_channels=block_in, | |
| temb_channels=self.temb_ch, dropout=dropout) | |
| # upsampling | |
| self.up = nn.ModuleList() | |
| for i_level in reversed(range(self.num_resolutions)): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_out = ch * ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks+1): | |
| block.append(ResnetBlock1d(in_channels=block_in, out_channels=block_out, | |
| temb_channels=self.temb_ch, dropout=dropout)) | |
| block_in = block_out | |
| if curr_res in attn_resolutions: | |
| attn.append(AttnBlock1d(block_in)) | |
| up = nn.Module() | |
| up.block = block | |
| up.attn = attn | |
| if i_level != 0: | |
| up.upsample = Upsample1d(block_in, resamp_with_conv) | |
| curr_res = curr_res * 2 | |
| self.up.insert(0, up) # prepend to get consistent order | |
| # end | |
| self.norm_out = Normalize(block_in) | |
| self.conv_out = torch.nn.Conv1d(block_in, out_ch, kernel_size=3, stride=1, padding=1) | |
| class VUNet(nn.Module): | |
| def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, | |
| attn_resolutions, dropout=0.0, resamp_with_conv=True, | |
| in_channels, c_channels, | |
| resolution, z_channels, use_timestep=False, **ignore_kwargs): | |
| super().__init__() | |
| self.ch = ch | |
| self.temb_ch = self.ch*4 | |
| self.num_resolutions = len(ch_mult) | |
| self.num_res_blocks = num_res_blocks | |
| self.resolution = resolution | |
| self.use_timestep = use_timestep | |
| if self.use_timestep: | |
| # timestep embedding | |
| self.temb = nn.Module() | |
| self.temb.dense = nn.ModuleList([ | |
| torch.nn.Linear(self.ch, | |
| self.temb_ch), | |
| torch.nn.Linear(self.temb_ch, | |
| self.temb_ch), | |
| ]) | |
| # downsampling | |
| self.conv_in = torch.nn.Conv2d(c_channels, | |
| self.ch, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| curr_res = resolution | |
| in_ch_mult = (1,)+tuple(ch_mult) | |
| self.down = nn.ModuleList() | |
| for i_level in range(self.num_resolutions): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_in = ch*in_ch_mult[i_level] | |
| block_out = ch*ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks): | |
| block.append(ResnetBlock(in_channels=block_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout)) | |
| block_in = block_out | |
| if curr_res in attn_resolutions: | |
| attn.append(AttnBlock(block_in)) | |
| down = nn.Module() | |
| down.block = block | |
| down.attn = attn | |
| if i_level != self.num_resolutions-1: | |
| down.downsample = Downsample(block_in, resamp_with_conv) | |
| curr_res = curr_res // 2 | |
| self.down.append(down) | |
| self.z_in = torch.nn.Conv2d(z_channels, | |
| block_in, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0) | |
| # middle | |
| self.mid = nn.Module() | |
| self.mid.block_1 = ResnetBlock(in_channels=2*block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout) | |
| self.mid.attn_1 = AttnBlock(block_in) | |
| self.mid.block_2 = ResnetBlock(in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout) | |
| # upsampling | |
| self.up = nn.ModuleList() | |
| for i_level in reversed(range(self.num_resolutions)): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_out = ch*ch_mult[i_level] | |
| skip_in = ch*ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks+1): | |
| if i_block == self.num_res_blocks: | |
| skip_in = ch*in_ch_mult[i_level] | |
| block.append(ResnetBlock(in_channels=block_in+skip_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout)) | |
| block_in = block_out | |
| if curr_res in attn_resolutions: | |
| attn.append(AttnBlock(block_in)) | |
| up = nn.Module() | |
| up.block = block | |
| up.attn = attn | |
| if i_level != 0: | |
| up.upsample = Upsample(block_in, resamp_with_conv) | |
| curr_res = curr_res * 2 | |
| self.up.insert(0, up) # prepend to get consistent order | |
| # end | |
| self.norm_out = Normalize(block_in) | |
| self.conv_out = torch.nn.Conv2d(block_in, | |
| out_ch, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| def forward(self, x, z): | |
| #assert x.shape[2] == x.shape[3] == self.resolution | |
| if self.use_timestep: | |
| # timestep embedding | |
| assert t is not None | |
| temb = get_timestep_embedding(t, self.ch) | |
| temb = self.temb.dense[0](temb) | |
| temb = nonlinearity(temb) | |
| temb = self.temb.dense[1](temb) | |
| else: | |
| temb = None | |
| # downsampling | |
| hs = [self.conv_in(x)] | |
| for i_level in range(self.num_resolutions): | |
| for i_block in range(self.num_res_blocks): | |
| h = self.down[i_level].block[i_block](hs[-1], temb) | |
| if len(self.down[i_level].attn) > 0: | |
| h = self.down[i_level].attn[i_block](h) | |
| hs.append(h) | |
| if i_level != self.num_resolutions-1: | |
| hs.append(self.down[i_level].downsample(hs[-1])) | |
| # middle | |
| h = hs[-1] | |
| z = self.z_in(z) | |
| h = torch.cat((h,z),dim=1) | |
| h = self.mid.block_1(h, temb) | |
| h = self.mid.attn_1(h) | |
| h = self.mid.block_2(h, temb) | |
| # upsampling | |
| for i_level in reversed(range(self.num_resolutions)): | |
| for i_block in range(self.num_res_blocks+1): | |
| h = self.up[i_level].block[i_block]( | |
| torch.cat([h, hs.pop()], dim=1), temb) | |
| if len(self.up[i_level].attn) > 0: | |
| h = self.up[i_level].attn[i_block](h) | |
| if i_level != 0: | |
| h = self.up[i_level].upsample(h) | |
| # end | |
| h = self.norm_out(h) | |
| h = nonlinearity(h) | |
| h = self.conv_out(h) | |
| return h | |
| class SimpleDecoder(nn.Module): | |
| def __init__(self, in_channels, out_channels, *args, **kwargs): | |
| super().__init__() | |
| self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1), | |
| ResnetBlock(in_channels=in_channels, | |
| out_channels=2 * in_channels, | |
| temb_channels=0, dropout=0.0), | |
| ResnetBlock(in_channels=2 * in_channels, | |
| out_channels=4 * in_channels, | |
| temb_channels=0, dropout=0.0), | |
| ResnetBlock(in_channels=4 * in_channels, | |
| out_channels=2 * in_channels, | |
| temb_channels=0, dropout=0.0), | |
| nn.Conv2d(2*in_channels, in_channels, 1), | |
| Upsample(in_channels, with_conv=True)]) | |
| # end | |
| self.norm_out = Normalize(in_channels) | |
| self.conv_out = torch.nn.Conv2d(in_channels, | |
| out_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| def forward(self, x): | |
| for i, layer in enumerate(self.model): | |
| if i in [1,2,3]: | |
| x = layer(x, None) | |
| else: | |
| x = layer(x) | |
| h = self.norm_out(x) | |
| h = nonlinearity(h) | |
| x = self.conv_out(h) | |
| return x | |
| class UpsampleDecoder(nn.Module): | |
| def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution, | |
| ch_mult=(2,2), dropout=0.0): | |
| super().__init__() | |
| # upsampling | |
| self.temb_ch = 0 | |
| self.num_resolutions = len(ch_mult) | |
| self.num_res_blocks = num_res_blocks | |
| block_in = in_channels | |
| curr_res = resolution // 2 ** (self.num_resolutions - 1) | |
| self.res_blocks = nn.ModuleList() | |
| self.upsample_blocks = nn.ModuleList() | |
| for i_level in range(self.num_resolutions): | |
| res_block = [] | |
| block_out = ch * ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks + 1): | |
| res_block.append(ResnetBlock(in_channels=block_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout)) | |
| block_in = block_out | |
| self.res_blocks.append(nn.ModuleList(res_block)) | |
| if i_level != self.num_resolutions - 1: | |
| self.upsample_blocks.append(Upsample(block_in, True)) | |
| curr_res = curr_res * 2 | |
| # end | |
| self.norm_out = Normalize(block_in) | |
| self.conv_out = torch.nn.Conv2d(block_in, | |
| out_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| def forward(self, x): | |
| # upsampling | |
| h = x | |
| for k, i_level in enumerate(range(self.num_resolutions)): | |
| for i_block in range(self.num_res_blocks + 1): | |
| h = self.res_blocks[i_level][i_block](h, None) | |
| if i_level != self.num_resolutions - 1: | |
| h = self.upsample_blocks[k](h) | |
| h = self.norm_out(h) | |
| h = nonlinearity(h) | |
| h = self.conv_out(h) | |
| return h | |
| if __name__ == '__main__': | |
| ddconfig = { | |
| 'ch': 128, | |
| 'num_res_blocks': 2, | |
| 'dropout': 0.0, | |
| 'z_channels': 256, | |
| 'double_z': False, | |
| } | |
| # Audio example ## | |
| ddconfig['in_channels'] = 1 | |
| ddconfig['resolution'] = 848 | |
| ddconfig['attn_resolutions'] = [53] | |
| ddconfig['ch_mult'] = [1, 1, 2, 2, 4] | |
| ddconfig['out_ch'] = 1 | |
| # input | |
| inputs = torch.rand(4, 1, 80, 848) | |
| print('Input:', inputs.shape) | |
| # Encoder | |
| encoder = Encoder(**ddconfig) | |
| enc_outs = encoder(inputs) | |
| print('Encoder out:', enc_outs.shape) | |
| # Decoder | |
| decoder = Decoder(**ddconfig) | |
| quant_outs = torch.rand(4, 256, 5, 53) | |
| dec_outs = decoder(quant_outs) | |
| print('Decoder out:', dec_outs.shape) | |