Spaces:
Runtime error
Runtime error
lang
Browse files- src/backend/manage_requests.py +2 -1
- src/display/utils.py +5 -1
- src/leaderboard/read_evals.py +9 -1
src/backend/manage_requests.py
CHANGED
|
@@ -22,7 +22,8 @@ class EvalRequest:
|
|
| 22 |
likes: Optional[int] = 0
|
| 23 |
params: Optional[int] = None
|
| 24 |
license: Optional[str] = ""
|
| 25 |
-
|
|
|
|
| 26 |
def get_model_args(self):
|
| 27 |
model_args = f"pretrained={self.model},revision={self.revision}"
|
| 28 |
|
|
|
|
| 22 |
likes: Optional[int] = 0
|
| 23 |
params: Optional[int] = None
|
| 24 |
license: Optional[str] = ""
|
| 25 |
+
lang: Optional[str] = ""
|
| 26 |
+
|
| 27 |
def get_model_args(self):
|
| 28 |
model_args = f"pretrained={self.model},revision={self.revision}"
|
| 29 |
|
src/display/utils.py
CHANGED
|
@@ -34,11 +34,12 @@ auto_eval_column_dict.append(["average_mc", ColumnContent, ColumnContent("Avg mc
|
|
| 34 |
for task in Tasks:
|
| 35 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
| 36 |
# Model information
|
| 37 |
-
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str",
|
| 38 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
| 39 |
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
| 40 |
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
| 41 |
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
|
|
|
| 42 |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", True)])
|
| 43 |
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False)])
|
| 44 |
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
|
@@ -72,6 +73,7 @@ class ModelType(Enum):
|
|
| 72 |
CPT = ModelDetails(name="continuously pretrained", symbol="π©")
|
| 73 |
IFT = ModelDetails(name="instruction-tuned", symbol="β")
|
| 74 |
RL = ModelDetails(name="RL-tuned", symbol="π¬")
|
|
|
|
| 75 |
Unknown = ModelDetails(name="", symbol="?")
|
| 76 |
|
| 77 |
def to_str(self, separator=" "):
|
|
@@ -87,6 +89,8 @@ class ModelType(Enum):
|
|
| 87 |
return ModelType.RL
|
| 88 |
if "instruction-tuned" in type or "β" in type:
|
| 89 |
return ModelType.IFT
|
|
|
|
|
|
|
| 90 |
return ModelType.Unknown
|
| 91 |
|
| 92 |
class WeightType(Enum):
|
|
|
|
| 34 |
for task in Tasks:
|
| 35 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
| 36 |
# Model information
|
| 37 |
+
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
| 38 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
| 39 |
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
| 40 |
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
| 41 |
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
| 42 |
+
auto_eval_column_dict.append(["lang", ColumnContent, ColumnContent("Lang", "str", True)])
|
| 43 |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", True)])
|
| 44 |
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False)])
|
| 45 |
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
|
|
|
| 73 |
CPT = ModelDetails(name="continuously pretrained", symbol="π©")
|
| 74 |
IFT = ModelDetails(name="instruction-tuned", symbol="β")
|
| 75 |
RL = ModelDetails(name="RL-tuned", symbol="π¬")
|
| 76 |
+
Baseline = ModelDetails(name="baseline", symbol="β")
|
| 77 |
Unknown = ModelDetails(name="", symbol="?")
|
| 78 |
|
| 79 |
def to_str(self, separator=" "):
|
|
|
|
| 89 |
return ModelType.RL
|
| 90 |
if "instruction-tuned" in type or "β" in type:
|
| 91 |
return ModelType.IFT
|
| 92 |
+
if "baseline" in type or "β" in type:
|
| 93 |
+
return ModelType.IFT
|
| 94 |
return ModelType.Unknown
|
| 95 |
|
| 96 |
class WeightType(Enum):
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -27,6 +27,7 @@ class EvalResult:
|
|
| 27 |
weight_type: WeightType = WeightType.Original # Original or Adapter
|
| 28 |
architecture: str = "Unknown"
|
| 29 |
license: str = "?"
|
|
|
|
| 30 |
likes: int = 0
|
| 31 |
num_params: int = 0
|
| 32 |
date: str = "" # submission date of request file
|
|
@@ -113,7 +114,7 @@ class EvalResult:
|
|
| 113 |
self.model_type = ModelType.from_str(meta.get("type", "?"))
|
| 114 |
self.num_params = meta.get("params", 0)
|
| 115 |
self.license = meta.get("license", "?")
|
| 116 |
-
|
| 117 |
#TODO desc name
|
| 118 |
except KeyError:
|
| 119 |
print(f"Could not find metadata for {self.full_model}")
|
|
@@ -239,6 +240,13 @@ class EvalResult:
|
|
| 239 |
except AttributeError:
|
| 240 |
print(f"AttributeError license")
|
| 241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
try:
|
| 243 |
data_dict[AutoEvalColumn.likes.name] = self.likes
|
| 244 |
except KeyError:
|
|
|
|
| 27 |
weight_type: WeightType = WeightType.Original # Original or Adapter
|
| 28 |
architecture: str = "Unknown"
|
| 29 |
license: str = "?"
|
| 30 |
+
lang: str = "?"
|
| 31 |
likes: int = 0
|
| 32 |
num_params: int = 0
|
| 33 |
date: str = "" # submission date of request file
|
|
|
|
| 114 |
self.model_type = ModelType.from_str(meta.get("type", "?"))
|
| 115 |
self.num_params = meta.get("params", 0)
|
| 116 |
self.license = meta.get("license", "?")
|
| 117 |
+
self.lang = meta.get("lang", "?")
|
| 118 |
#TODO desc name
|
| 119 |
except KeyError:
|
| 120 |
print(f"Could not find metadata for {self.full_model}")
|
|
|
|
| 240 |
except AttributeError:
|
| 241 |
print(f"AttributeError license")
|
| 242 |
|
| 243 |
+
try:
|
| 244 |
+
data_dict[AutoEvalColumn.lang.name] = self.lang
|
| 245 |
+
except KeyError:
|
| 246 |
+
print(f"Could not find lang")
|
| 247 |
+
except AttributeError:
|
| 248 |
+
print(f"AttributeError lang")
|
| 249 |
+
|
| 250 |
try:
|
| 251 |
data_dict[AutoEvalColumn.likes.name] = self.likes
|
| 252 |
except KeyError:
|