Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	do not display incomplete models for now
Browse files
    	
        app.py
    CHANGED
    
    | @@ -93,6 +93,21 @@ if not IS_PUBLIC: | |
| 93 | 
             
            EVAL_COLS = ["model", "revision", "private", "8bit_eval", "is_delta_weight", "status"]
         | 
| 94 | 
             
            EVAL_TYPES = ["markdown", "str", "bool", "bool", "bool", "str"]
         | 
| 95 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 96 |  | 
| 97 | 
             
            def get_leaderboard():
         | 
| 98 | 
             
                if repo:
         | 
| @@ -125,11 +140,22 @@ def get_leaderboard(): | |
| 125 | 
             
                    }
         | 
| 126 | 
             
                    all_data.append(gpt35_values)
         | 
| 127 |  | 
| 128 | 
            -
                 | 
| 129 | 
            -
                 | 
| 130 | 
            -
                 | 
| 131 | 
            -
             | 
| 132 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 133 |  | 
| 134 |  | 
| 135 | 
             
            def get_eval_table():
         | 
| @@ -144,7 +170,7 @@ def get_eval_table(): | |
| 144 | 
             
                all_evals = []
         | 
| 145 |  | 
| 146 | 
             
                for entry in entries:
         | 
| 147 | 
            -
                    print(entry)
         | 
| 148 | 
             
                    if ".json" in entry:
         | 
| 149 | 
             
                        file_path = os.path.join("evals/eval_requests", entry)
         | 
| 150 | 
             
                        with open(file_path) as fp:
         | 
| @@ -171,12 +197,17 @@ def get_eval_table(): | |
| 171 | 
             
                            data["model"] = make_clickable_model(data["model"])
         | 
| 172 | 
             
                            all_evals.append(data)
         | 
| 173 |  | 
| 174 | 
            -
                 | 
| 175 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 176 |  | 
| 177 |  | 
| 178 | 
             
            leaderboard = get_leaderboard()
         | 
| 179 | 
            -
             | 
| 180 |  | 
| 181 |  | 
| 182 | 
             
            def is_model_on_hub(model_name, revision) -> bool:
         | 
| @@ -237,7 +268,7 @@ def add_new_eval( | |
| 237 | 
             
                if out_path.lower() in requested_models:
         | 
| 238 | 
             
                    duplicate_request_message = "This model has been already submitted."
         | 
| 239 | 
             
                    return f"<p style='color: orange; font-size: 20px; text-align: center;'>{duplicate_request_message}</p>"
         | 
| 240 | 
            -
             | 
| 241 | 
             
                with open(out_path, "w") as f:
         | 
| 242 | 
             
                    f.write(json.dumps(eval_entry))
         | 
| 243 | 
             
                LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
         | 
| @@ -256,7 +287,10 @@ def add_new_eval( | |
| 256 |  | 
| 257 |  | 
| 258 | 
             
            def refresh():
         | 
| 259 | 
            -
                 | 
|  | |
|  | |
|  | |
| 260 |  | 
| 261 |  | 
| 262 | 
             
            block = gr.Blocks()
         | 
| @@ -289,16 +323,43 @@ We chose these benchmarks as they test a variety of reasoning and general knowle | |
| 289 |  | 
| 290 | 
             
                """
         | 
| 291 | 
             
                    )
         | 
| 292 | 
            -
                with gr.Accordion(" | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 293 | 
             
                    with gr.Row():
         | 
| 294 | 
            -
                         | 
| 295 | 
            -
                            value= | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 296 | 
             
                        )
         | 
| 297 |  | 
| 298 | 
             
                with gr.Row():
         | 
| 299 | 
             
                    refresh_button = gr.Button("Refresh")
         | 
| 300 | 
             
                    refresh_button.click(
         | 
| 301 | 
            -
                        refresh, | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 302 | 
             
                    )
         | 
| 303 |  | 
| 304 | 
             
                with gr.Accordion("Submit a new model for evaluation"):
         | 
| @@ -332,5 +393,14 @@ We chose these benchmarks as they test a variety of reasoning and general knowle | |
| 332 | 
             
                            submission_result,
         | 
| 333 | 
             
                        )
         | 
| 334 |  | 
| 335 | 
            -
                block.load( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 336 | 
             
            block.launch()
         | 
|  | |
| 93 | 
             
            EVAL_COLS = ["model", "revision", "private", "8bit_eval", "is_delta_weight", "status"]
         | 
| 94 | 
             
            EVAL_TYPES = ["markdown", "str", "bool", "bool", "bool", "str"]
         | 
| 95 |  | 
| 96 | 
            +
            BENCHMARK_COLS = [
         | 
| 97 | 
            +
                "ARC (25-shot) ⬆️",
         | 
| 98 | 
            +
                "HellaSwag (10-shot) ⬆️",
         | 
| 99 | 
            +
                "MMLU (5-shot) ⬆️",
         | 
| 100 | 
            +
                "TruthfulQA (0-shot) ⬆️",
         | 
| 101 | 
            +
            ]
         | 
| 102 | 
            +
             | 
| 103 | 
            +
             | 
| 104 | 
            +
            def has_no_nan_values(df, columns):
         | 
| 105 | 
            +
                return df[columns].notna().all(axis=1)
         | 
| 106 | 
            +
             | 
| 107 | 
            +
             | 
| 108 | 
            +
            def has_nan_values(df, columns):
         | 
| 109 | 
            +
                return df[columns].isna().any(axis=1)
         | 
| 110 | 
            +
             | 
| 111 |  | 
| 112 | 
             
            def get_leaderboard():
         | 
| 113 | 
             
                if repo:
         | 
|  | |
| 140 | 
             
                    }
         | 
| 141 | 
             
                    all_data.append(gpt35_values)
         | 
| 142 |  | 
| 143 | 
            +
                df = pd.DataFrame.from_records(all_data)
         | 
| 144 | 
            +
                df = df.sort_values(by=["Average ⬆️"], ascending=False)
         | 
| 145 | 
            +
                df = df[COLS]
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                # get incomplete models
         | 
| 148 | 
            +
                incomplete_models = df[has_nan_values(df, BENCHMARK_COLS)]["Model"].tolist()
         | 
| 149 | 
            +
                print(
         | 
| 150 | 
            +
                    [
         | 
| 151 | 
            +
                        model.split(" style")[0].split("https://huggingface.co/")[1]
         | 
| 152 | 
            +
                        for model in incomplete_models
         | 
| 153 | 
            +
                    ]
         | 
| 154 | 
            +
                )
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                # filter out if any of the benchmarks have not been produced
         | 
| 157 | 
            +
                df = df[has_no_nan_values(df, BENCHMARK_COLS)]
         | 
| 158 | 
            +
                return df
         | 
| 159 |  | 
| 160 |  | 
| 161 | 
             
            def get_eval_table():
         | 
|  | |
| 170 | 
             
                all_evals = []
         | 
| 171 |  | 
| 172 | 
             
                for entry in entries:
         | 
| 173 | 
            +
                    # print(entry)
         | 
| 174 | 
             
                    if ".json" in entry:
         | 
| 175 | 
             
                        file_path = os.path.join("evals/eval_requests", entry)
         | 
| 176 | 
             
                        with open(file_path) as fp:
         | 
|  | |
| 197 | 
             
                            data["model"] = make_clickable_model(data["model"])
         | 
| 198 | 
             
                            all_evals.append(data)
         | 
| 199 |  | 
| 200 | 
            +
                pending_list = [e for e in all_evals if e["status"] == "PENDING"]
         | 
| 201 | 
            +
                running_list = [e for e in all_evals if e["status"] == "RUNNING"]
         | 
| 202 | 
            +
                finished_list = [e for e in all_evals if e["status"] == "FINISHED"]
         | 
| 203 | 
            +
                df_pending = pd.DataFrame.from_records(pending_list)
         | 
| 204 | 
            +
                df_running = pd.DataFrame.from_records(running_list)
         | 
| 205 | 
            +
                df_finished = pd.DataFrame.from_records(finished_list)
         | 
| 206 | 
            +
                return df_finished[EVAL_COLS], df_running[EVAL_COLS], df_pending[EVAL_COLS]
         | 
| 207 |  | 
| 208 |  | 
| 209 | 
             
            leaderboard = get_leaderboard()
         | 
| 210 | 
            +
            finished_eval_queue, running_eval_queue, pending_eval_queue = get_eval_table()
         | 
| 211 |  | 
| 212 |  | 
| 213 | 
             
            def is_model_on_hub(model_name, revision) -> bool:
         | 
|  | |
| 268 | 
             
                if out_path.lower() in requested_models:
         | 
| 269 | 
             
                    duplicate_request_message = "This model has been already submitted."
         | 
| 270 | 
             
                    return f"<p style='color: orange; font-size: 20px; text-align: center;'>{duplicate_request_message}</p>"
         | 
| 271 | 
            +
             | 
| 272 | 
             
                with open(out_path, "w") as f:
         | 
| 273 | 
             
                    f.write(json.dumps(eval_entry))
         | 
| 274 | 
             
                LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
         | 
|  | |
| 287 |  | 
| 288 |  | 
| 289 | 
             
            def refresh():
         | 
| 290 | 
            +
                leaderboard = get_leaderboard()
         | 
| 291 | 
            +
                finished_eval_queue, running_eval_queue, pending_eval_queue = get_eval_table()
         | 
| 292 | 
            +
                get_leaderboard(), get_eval_table()
         | 
| 293 | 
            +
                return leaderboard, finished_eval_queue, running_eval_queue, pending_eval_queue
         | 
| 294 |  | 
| 295 |  | 
| 296 | 
             
            block = gr.Blocks()
         | 
|  | |
| 323 |  | 
| 324 | 
             
                """
         | 
| 325 | 
             
                    )
         | 
| 326 | 
            +
                with gr.Accordion("Finished Evaluations", open=False):
         | 
| 327 | 
            +
                    with gr.Row():
         | 
| 328 | 
            +
                        finished_eval_table = gr.components.Dataframe(
         | 
| 329 | 
            +
                            value=finished_eval_queue,
         | 
| 330 | 
            +
                            headers=EVAL_COLS,
         | 
| 331 | 
            +
                            datatype=EVAL_TYPES,
         | 
| 332 | 
            +
                            max_rows=5,
         | 
| 333 | 
            +
                        )
         | 
| 334 | 
            +
                with gr.Accordion("Running Evaluation Queue", open=False):
         | 
| 335 | 
             
                    with gr.Row():
         | 
| 336 | 
            +
                        running_eval_table = gr.components.Dataframe(
         | 
| 337 | 
            +
                            value=running_eval_queue,
         | 
| 338 | 
            +
                            headers=EVAL_COLS,
         | 
| 339 | 
            +
                            datatype=EVAL_TYPES,
         | 
| 340 | 
            +
                            max_rows=5,
         | 
| 341 | 
            +
                        )
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                with gr.Accordion("Running & Pending Evaluation Queue", open=False):
         | 
| 344 | 
            +
                    with gr.Row():
         | 
| 345 | 
            +
                        pending_eval_table = gr.components.Dataframe(
         | 
| 346 | 
            +
                            value=pending_eval_queue,
         | 
| 347 | 
            +
                            headers=EVAL_COLS,
         | 
| 348 | 
            +
                            datatype=EVAL_TYPES,
         | 
| 349 | 
            +
                            max_rows=5,
         | 
| 350 | 
             
                        )
         | 
| 351 |  | 
| 352 | 
             
                with gr.Row():
         | 
| 353 | 
             
                    refresh_button = gr.Button("Refresh")
         | 
| 354 | 
             
                    refresh_button.click(
         | 
| 355 | 
            +
                        refresh,
         | 
| 356 | 
            +
                        inputs=[],
         | 
| 357 | 
            +
                        outputs=[
         | 
| 358 | 
            +
                            leaderboard_table,
         | 
| 359 | 
            +
                            finished_eval_table,
         | 
| 360 | 
            +
                            running_eval_table,
         | 
| 361 | 
            +
                            pending_eval_table,
         | 
| 362 | 
            +
                        ],
         | 
| 363 | 
             
                    )
         | 
| 364 |  | 
| 365 | 
             
                with gr.Accordion("Submit a new model for evaluation"):
         | 
|  | |
| 393 | 
             
                            submission_result,
         | 
| 394 | 
             
                        )
         | 
| 395 |  | 
| 396 | 
            +
                block.load(
         | 
| 397 | 
            +
                    refresh,
         | 
| 398 | 
            +
                    inputs=[],
         | 
| 399 | 
            +
                    outputs=[
         | 
| 400 | 
            +
                        leaderboard_table,
         | 
| 401 | 
            +
                        finished_eval_table,
         | 
| 402 | 
            +
                        running_eval_table,
         | 
| 403 | 
            +
                        pending_eval_table,
         | 
| 404 | 
            +
                    ],
         | 
| 405 | 
            +
                )
         | 
| 406 | 
             
            block.launch()
         | 
 
			
