Sync latest code from Hugging Face
Browse files
misinformationui/static/front.html
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>Fake News Detection Chatbot</title>
|
7 |
+
<link rel="stylesheet" href="style.css">
|
8 |
+
</head>
|
9 |
+
|
10 |
+
<body>
|
11 |
+
<div class="chat-container" id="chat"></div>
|
12 |
+
|
13 |
+
<div class="input-area">
|
14 |
+
<input type="text" id="query" placeholder="Type news to verify..." />
|
15 |
+
<button id="sendBtn">Send</button>
|
16 |
+
</div>
|
17 |
+
|
18 |
+
<div class="chat-background" id="chat-background">
|
19 |
+
<p id="p1">Hey,</p>
|
20 |
+
<p id="p2">Discover misinformations around you,</p>
|
21 |
+
</div>
|
22 |
+
|
23 |
+
<script src="script.js"></script>
|
24 |
+
</body>
|
25 |
+
</html>
|
misinformationui/static/main.py
ADDED
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/home/tom/miniconda3/envs/fake_news_detection/bin/python
|
2 |
+
"""
|
3 |
+
main.py - Server for the Fake News Detection system
|
4 |
+
|
5 |
+
This script creates a Flask server that exposes API endpoints to:
|
6 |
+
1. Take user input (news query) from the UI
|
7 |
+
2. Process the request through the fake news detection pipeline
|
8 |
+
3. Return the results to the UI for display
|
9 |
+
"""
|
10 |
+
|
11 |
+
import os
|
12 |
+
import json
|
13 |
+
import time
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
from flask import Flask, request, jsonify
|
16 |
+
from flask_cors import CORS
|
17 |
+
|
18 |
+
# Import required functions from modules
|
19 |
+
from gdelt_api import (
|
20 |
+
fetch_articles_from_gdelt,
|
21 |
+
filter_by_whitelisted_domains,
|
22 |
+
normalize_gdelt_articles
|
23 |
+
)
|
24 |
+
from ranker import ArticleRanker
|
25 |
+
from gdelt_query_builder import generate_query, GEMINI_MODEL
|
26 |
+
import bias_analyzer
|
27 |
+
|
28 |
+
# Global variable for embedding model caching across requests
|
29 |
+
print("Preloading embedding model for faster request processing...")
|
30 |
+
# Preload the embedding model at server startup
|
31 |
+
global_ranker = ArticleRanker()
|
32 |
+
|
33 |
+
|
34 |
+
# The function has been removed since bias category descriptions are provided directly by the Gemini model
|
35 |
+
# and stored in the bias_analysis["descriptions"] dictionary
|
36 |
+
|
37 |
+
|
38 |
+
def format_results(query, ranked_articles):
|
39 |
+
"""
|
40 |
+
Format the ranked results in a structured way for the UI.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
query (str): The original query
|
44 |
+
ranked_articles (list): List of ranked article dictionaries
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
dict: Dictionary with formatted results
|
48 |
+
"""
|
49 |
+
result = {}
|
50 |
+
|
51 |
+
if not ranked_articles:
|
52 |
+
result = {
|
53 |
+
"status": "no_results",
|
54 |
+
"message": "⚠️ No news found. Possibly Fake.",
|
55 |
+
"details": "No reliable sources could verify this information.",
|
56 |
+
"articles": []
|
57 |
+
}
|
58 |
+
else:
|
59 |
+
# Get display configuration from environment variables
|
60 |
+
show_scores = os.getenv('SHOW_SIMILARITY_SCORES', 'true').lower() == 'true'
|
61 |
+
show_date = os.getenv('SHOW_PUBLISH_DATE', 'true').lower() == 'true'
|
62 |
+
show_url = os.getenv('SHOW_URL', 'true').lower() == 'true'
|
63 |
+
|
64 |
+
formatted_articles = []
|
65 |
+
for article in ranked_articles:
|
66 |
+
formatted_article = {
|
67 |
+
"rank": article['rank'],
|
68 |
+
"title": article['title'],
|
69 |
+
"source": article['source']
|
70 |
+
}
|
71 |
+
|
72 |
+
if show_scores:
|
73 |
+
formatted_article["similarity_score"] = round(article['similarity_score'], 4)
|
74 |
+
|
75 |
+
if show_url:
|
76 |
+
formatted_article["url"] = article['url']
|
77 |
+
|
78 |
+
if show_date:
|
79 |
+
formatted_article["published_at"] = article['published_at']
|
80 |
+
|
81 |
+
formatted_articles.append(formatted_article)
|
82 |
+
|
83 |
+
result = {
|
84 |
+
"status": "success",
|
85 |
+
"message": f"✅ Found {len(ranked_articles)} relevant articles for: '{query}'",
|
86 |
+
"articles": formatted_articles,
|
87 |
+
"footer": "If the news matches these reliable sources, it's likely true. If it contradicts them or no sources are found, it might be fake."
|
88 |
+
}
|
89 |
+
|
90 |
+
return result
|
91 |
+
|
92 |
+
|
93 |
+
def remove_duplicates(articles):
|
94 |
+
"""
|
95 |
+
Remove duplicate articles based on URL.
|
96 |
+
|
97 |
+
Args:
|
98 |
+
articles (list): List of article dictionaries
|
99 |
+
|
100 |
+
Returns:
|
101 |
+
list: List with duplicate articles removed
|
102 |
+
"""
|
103 |
+
unique_urls = set()
|
104 |
+
unique_articles = []
|
105 |
+
|
106 |
+
for article in articles:
|
107 |
+
if article['url'] not in unique_urls:
|
108 |
+
unique_urls.add(article['url'])
|
109 |
+
unique_articles.append(article)
|
110 |
+
|
111 |
+
return unique_articles
|
112 |
+
|
113 |
+
|
114 |
+
# This function has been removed since Gemini is a cloud API service
|
115 |
+
# that does not require local caching - models are instantiated as needed
|
116 |
+
|
117 |
+
|
118 |
+
def main():
|
119 |
+
"""Main function to run the fake news detection pipeline as a server."""
|
120 |
+
# Load environment variables
|
121 |
+
load_dotenv()
|
122 |
+
|
123 |
+
# Create Flask app
|
124 |
+
app = Flask(__name__, static_folder='static')
|
125 |
+
CORS(app) # Enable CORS for all routes
|
126 |
+
|
127 |
+
@app.route('/static/')
|
128 |
+
def index():
|
129 |
+
"""Serve the main page."""
|
130 |
+
return app.send_static_file('front.html')
|
131 |
+
|
132 |
+
|
133 |
+
@app.route('/api/detect', methods=['POST'])
|
134 |
+
def detect_fake_news():
|
135 |
+
"""API endpoint to check if news is potentially fake."""
|
136 |
+
# Start timing the request processing
|
137 |
+
start_time = time.time()
|
138 |
+
|
139 |
+
data = request.json
|
140 |
+
query = data.get('query', '')
|
141 |
+
|
142 |
+
if not query:
|
143 |
+
return jsonify({
|
144 |
+
"status": "error",
|
145 |
+
"message": "Please provide a news statement to verify."
|
146 |
+
})
|
147 |
+
|
148 |
+
# =====================================================
|
149 |
+
# 1. Input Handling
|
150 |
+
# =====================================================
|
151 |
+
# Generate three variations of the query using Gemini
|
152 |
+
query_variations = generate_query(query)
|
153 |
+
|
154 |
+
# Check if the query was flagged as inappropriate
|
155 |
+
if query_variations == ["INAPPROPRIATE_QUERY"]:
|
156 |
+
return jsonify({
|
157 |
+
"status": "error",
|
158 |
+
"message": "I cannot provide information on this topic as it appears to contain sensitive or inappropriate content."
|
159 |
+
})
|
160 |
+
|
161 |
+
# =====================================================
|
162 |
+
# 2. Data Fetching
|
163 |
+
# =====================================================
|
164 |
+
# Fetch articles from GDELT API for each query variation
|
165 |
+
all_articles = []
|
166 |
+
for query_var in query_variations:
|
167 |
+
articles = fetch_articles_from_gdelt(query_var)
|
168 |
+
if articles:
|
169 |
+
all_articles.extend(articles)
|
170 |
+
|
171 |
+
# Store unique articles in a set to ensure uniqueness
|
172 |
+
unique_articles = remove_duplicates(all_articles)
|
173 |
+
|
174 |
+
# Apply domain whitelist filtering if enabled in .env
|
175 |
+
use_whitelist_only = os.getenv('USE_WHITELIST_ONLY', 'false').lower() == 'true'
|
176 |
+
if use_whitelist_only:
|
177 |
+
print(f"Filtering articles to only include whitelisted domains...")
|
178 |
+
unique_articles = filter_by_whitelisted_domains(unique_articles)
|
179 |
+
print(f"After whitelist filtering: {len(unique_articles)} articles remain")
|
180 |
+
|
181 |
+
# Normalize the articles to a standard format
|
182 |
+
normalized_articles = normalize_gdelt_articles(unique_articles)
|
183 |
+
|
184 |
+
if not normalized_articles:
|
185 |
+
return jsonify(format_results(query, []))
|
186 |
+
|
187 |
+
# =====================================================
|
188 |
+
# 3. Embedding & Ranking
|
189 |
+
# =====================================================
|
190 |
+
# Initialize the ranker with model from environment variable
|
191 |
+
model_name = os.getenv('SIMILARITY_MODEL', 'intfloat/multilingual-e5-base')
|
192 |
+
|
193 |
+
# Use global ranker if it matches the requested model, otherwise create a new instance
|
194 |
+
if global_ranker.model_name == model_name:
|
195 |
+
ranker = global_ranker
|
196 |
+
else:
|
197 |
+
ranker = ArticleRanker(model_name)
|
198 |
+
|
199 |
+
# Get TOP_K_ARTICLES from .env file
|
200 |
+
TOP_K_ARTICLES = int(os.getenv('TOP_K_ARTICLES', 250))
|
201 |
+
min_threshold = float(os.getenv('MIN_SIMILARITY_THRESHOLD', 0.1))
|
202 |
+
|
203 |
+
# Prepare article texts for embedding
|
204 |
+
article_texts = [f"{article['title']} {article['description'] or ''}" for article in normalized_articles]
|
205 |
+
|
206 |
+
# Create embeddings and calculate similarities
|
207 |
+
query_embedding, article_embeddings = ranker.create_embeddings(query, article_texts)
|
208 |
+
similarities = ranker.calculate_similarities(query_embedding, article_embeddings)
|
209 |
+
|
210 |
+
# Get top articles based on similarity
|
211 |
+
top_indices = ranker.get_top_articles(similarities, normalized_articles, TOP_K_ARTICLES, min_threshold)
|
212 |
+
top_articles = ranker.format_results(top_indices, similarities, normalized_articles)
|
213 |
+
|
214 |
+
# =====================================================
|
215 |
+
# 4. Bias Categorization
|
216 |
+
# =====================================================
|
217 |
+
# Extract outlet names from the TOP_K_ARTICLES
|
218 |
+
# In top_articles, the source is already extracted as a string
|
219 |
+
outlet_names = [article['source'] for article in top_articles]
|
220 |
+
unique_outlets = list(set(outlet_names))
|
221 |
+
print(f"Analyzing {len(unique_outlets)} unique news outlets for bias...")
|
222 |
+
|
223 |
+
# Analyze bias using Gemini - send just the outlet names, not the whole articles
|
224 |
+
bias_analysis = bias_analyzer.analyze_bias(query, unique_outlets, GEMINI_MODEL)
|
225 |
+
|
226 |
+
# =====================================================
|
227 |
+
# 5. Category Embeddings
|
228 |
+
# =====================================================
|
229 |
+
print("\n" + "=" * 80)
|
230 |
+
print("EMBEDDING VECTORS BY BIAS CATEGORY")
|
231 |
+
print("=" * 80)
|
232 |
+
|
233 |
+
# Create embedding vectors for each bias category
|
234 |
+
# 1. Group articles based on their outlet's bias category
|
235 |
+
# 2. Create an embedding vector for each category using ONLY article titles
|
236 |
+
# 3. Rank articles within each category by similarity to query
|
237 |
+
category_rankings = bias_analyzer.categorize_and_rank_by_bias(
|
238 |
+
query, normalized_articles, bias_analysis, ranker, min_threshold
|
239 |
+
)
|
240 |
+
|
241 |
+
# =====================================================
|
242 |
+
# 6. Top N Selection per Category
|
243 |
+
# =====================================================
|
244 |
+
# Get TOP_N_PER_CATEGORY from .env file (default: 5)
|
245 |
+
TOP_N_PER_CATEGORY = int(os.getenv('TOP_N_PER_CATEGORY', 5))
|
246 |
+
|
247 |
+
# Get total counts of articles per category before filtering
|
248 |
+
category_article_counts = {
|
249 |
+
category: len(articles)
|
250 |
+
for category, articles in category_rankings.items()
|
251 |
+
if category not in ["descriptions", "reasoning"]
|
252 |
+
}
|
253 |
+
|
254 |
+
# For each bias category, select the top N articles
|
255 |
+
# These are the most relevant articles within each bias perspective
|
256 |
+
filtered_category_rankings = {}
|
257 |
+
for category, articles in category_rankings.items():
|
258 |
+
# Skip non-category keys like "descriptions" or "reasoning"
|
259 |
+
if category in ["descriptions", "reasoning"]:
|
260 |
+
continue
|
261 |
+
|
262 |
+
filtered_category_rankings[category] = articles[:TOP_N_PER_CATEGORY]
|
263 |
+
|
264 |
+
# Only print if there are articles in this category
|
265 |
+
if len(filtered_category_rankings[category]) > 0:
|
266 |
+
print(f"\n===== Top {len(filtered_category_rankings[category])} articles from {category} category =====")
|
267 |
+
|
268 |
+
# Print detailed information about each selected article
|
269 |
+
for i, article in enumerate(filtered_category_rankings[category], 1):
|
270 |
+
print(f"Article #{i}:")
|
271 |
+
print(f" Title: {article['title']}")
|
272 |
+
print(f" Source: {article['source']}")
|
273 |
+
print(f" Similarity Score: {article['similarity_score']:.4f}")
|
274 |
+
print(f" Rank: {article['rank']}")
|
275 |
+
print(f" URL: {article['url']}")
|
276 |
+
print(f" Published: {article['published_at']}")
|
277 |
+
print("-" * 50)
|
278 |
+
|
279 |
+
# =====================================================
|
280 |
+
# 7. Summarization
|
281 |
+
# =====================================================
|
282 |
+
# Generate summary from articles in all categories
|
283 |
+
print("\nGenerating factual summary using top articles from all categories...")
|
284 |
+
|
285 |
+
# Pass the original bias_analysis to include the reasoning in the summary
|
286 |
+
# We need to add the reasoning to filtered_category_rankings since that's what gets passed to generate_summary
|
287 |
+
filtered_category_rankings["reasoning"] = bias_analysis.get("reasoning", "No reasoning provided")
|
288 |
+
|
289 |
+
# Call the bias_analyzer's generate_summary function with articles from all categories
|
290 |
+
summary = bias_analyzer.generate_summary(
|
291 |
+
query,
|
292 |
+
normalized_articles,
|
293 |
+
filtered_category_rankings,
|
294 |
+
GEMINI_MODEL
|
295 |
+
)
|
296 |
+
|
297 |
+
# Print the summary to terminal (already includes its own formatting)
|
298 |
+
print(summary)
|
299 |
+
|
300 |
+
# Prepare response with only the summary and reasoning
|
301 |
+
result = {
|
302 |
+
"query": query,
|
303 |
+
"summary": summary,
|
304 |
+
"reasoning": bias_analysis.get("reasoning", "No reasoning provided")
|
305 |
+
}
|
306 |
+
|
307 |
+
return jsonify(result)
|
308 |
+
|
309 |
+
@app.route('/api/health', methods=['GET'])
|
310 |
+
def health_check():
|
311 |
+
"""API endpoint to check if the server is running."""
|
312 |
+
return jsonify({
|
313 |
+
"status": "ok",
|
314 |
+
"message": "Fake News Detection API is running"
|
315 |
+
})
|
316 |
+
|
317 |
+
# Get port from environment variable or use default 5000
|
318 |
+
port = int(os.getenv('PORT', 5000))
|
319 |
+
debug = os.getenv('DEBUG', 'false').lower() == 'true'
|
320 |
+
|
321 |
+
print(f"Starting Fake News Detection API server on port {port}...")
|
322 |
+
# Start the Flask server
|
323 |
+
app.run(host='0.0.0.0', port=port, debug=debug)
|
324 |
+
|
325 |
+
|
326 |
+
if __name__ == "__main__":
|
327 |
+
main()
|
misinformationui/static/script.js
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
const chat = document.getElementById('chat');
|
2 |
+
const input = document.getElementById('query');
|
3 |
+
const sendBtn = document.getElementById('sendBtn');
|
4 |
+
|
5 |
+
function addMessage(text, sender, isPre = false) {
|
6 |
+
const msg = document.createElement('div');
|
7 |
+
msg.classList.add('message', sender);
|
8 |
+
|
9 |
+
// Add special class for pre-formatted messages to style them properly
|
10 |
+
if (isPre) {
|
11 |
+
msg.classList.add('pre-formatted');
|
12 |
+
|
13 |
+
// For pre-formatted text (terminal output)
|
14 |
+
const pre = document.createElement('pre');
|
15 |
+
pre.textContent = text;
|
16 |
+
|
17 |
+
// No inline styles - all styling comes from CSS
|
18 |
+
msg.appendChild(pre);
|
19 |
+
} else {
|
20 |
+
msg.textContent = text;
|
21 |
+
}
|
22 |
+
|
23 |
+
chat.appendChild(msg);
|
24 |
+
|
25 |
+
// Smooth scroll to new message
|
26 |
+
setTimeout(() => {
|
27 |
+
msg.scrollIntoView({ behavior: 'smooth', block: 'end' });
|
28 |
+
}, 100);
|
29 |
+
|
30 |
+
return msg;
|
31 |
+
}
|
32 |
+
|
33 |
+
async function sendMessage() {
|
34 |
+
const query = input.value.trim();
|
35 |
+
if (!query) return;
|
36 |
+
|
37 |
+
const bg = document.getElementById('chat-background');
|
38 |
+
if (bg && !bg.classList.contains('blurred')) {
|
39 |
+
bg.classList.add('blurred');
|
40 |
+
}
|
41 |
+
|
42 |
+
addMessage(query, 'user');
|
43 |
+
input.value = '';
|
44 |
+
|
45 |
+
const loader = addMessage('Processing...', 'bot');
|
46 |
+
|
47 |
+
try {
|
48 |
+
const response = await fetch('/api/detect', {
|
49 |
+
method: 'POST',
|
50 |
+
headers: { 'Content-Type': 'application/json' },
|
51 |
+
body: JSON.stringify({ query: query })
|
52 |
+
});
|
53 |
+
|
54 |
+
const data = await response.json();
|
55 |
+
loader.remove();
|
56 |
+
|
57 |
+
if (data && data.summary) {
|
58 |
+
// Display summary exactly as it comes from the backend
|
59 |
+
addMessage(data.summary, 'bot', true); // scrollable <pre> block
|
60 |
+
} else {
|
61 |
+
addMessage("Could not generate a summary.", 'bot');
|
62 |
+
}
|
63 |
+
} catch (e) {
|
64 |
+
loader.remove();
|
65 |
+
addMessage("Error checking news.", 'bot');
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
function formatBackendData(data) {
|
70 |
+
// If we have a summary, only display that
|
71 |
+
if (data && data.summary) {
|
72 |
+
if (typeof data.summary === 'string') {
|
73 |
+
return data.summary;
|
74 |
+
} else if (typeof data.summary === 'object' && data.summary.text) {
|
75 |
+
return data.summary.text;
|
76 |
+
} else {
|
77 |
+
return JSON.stringify(data.summary, null, 2);
|
78 |
+
}
|
79 |
+
}
|
80 |
+
|
81 |
+
// If no summary is available, return null so we can fall back to showing basic results
|
82 |
+
return null;
|
83 |
+
}
|
84 |
+
|
85 |
+
sendBtn.addEventListener('click', sendMessage);
|
86 |
+
input.addEventListener('keypress', (e) => {
|
87 |
+
if (e.key === 'Enter') sendMessage();
|
88 |
+
});
|
misinformationui/static/style.css
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
body {
|
2 |
+
font-family: Arial, sans-serif;
|
3 |
+
margin: 0;
|
4 |
+
padding: 0;
|
5 |
+
height: 100vh;
|
6 |
+
display: flex;
|
7 |
+
flex-direction: column;
|
8 |
+
overflow: hidden;
|
9 |
+
}
|
10 |
+
|
11 |
+
/* Blurred background image */
|
12 |
+
body::before {
|
13 |
+
content: "";
|
14 |
+
position: fixed;
|
15 |
+
top: 0;
|
16 |
+
left: 0;
|
17 |
+
width: 100vw;
|
18 |
+
height: 100vh;
|
19 |
+
z-index: -1;
|
20 |
+
background: rgb(23, 23, 23);
|
21 |
+
}
|
22 |
+
|
23 |
+
.chat-container {
|
24 |
+
flex: 1;
|
25 |
+
display: flex;
|
26 |
+
flex-direction: column;
|
27 |
+
padding: 15px;
|
28 |
+
overflow-y: auto;
|
29 |
+
overflow-x: hidden; /* prevent horizontal scrolling */
|
30 |
+
margin-bottom: 70px;
|
31 |
+
background: transparent;
|
32 |
+
width: 100%;
|
33 |
+
max-width: 95%; /* wider to accommodate terminal output */
|
34 |
+
margin-left: auto; /* center align */
|
35 |
+
margin-right: auto; /* center align */
|
36 |
+
scroll-behavior: smooth; /* Smooth scrolling */
|
37 |
+
height: calc(100vh - 70px); /* Full height minus input area */
|
38 |
+
}
|
39 |
+
|
40 |
+
.message {
|
41 |
+
width: fit-content; /* shrink to text */
|
42 |
+
max-width: 100%; /* allow full width for terminal output */
|
43 |
+
margin-bottom: 12px;
|
44 |
+
padding: 12px 15px;
|
45 |
+
border-radius: 15px;
|
46 |
+
line-height: 1.4;
|
47 |
+
}
|
48 |
+
|
49 |
+
/* Special styling for bot messages with pre-formatted text */
|
50 |
+
.message.bot.pre-formatted {
|
51 |
+
width: 100%; /* full width for terminal output */
|
52 |
+
max-width: 100%; /* no width restriction */
|
53 |
+
white-space: pre-wrap; /* wrap text to prevent horizontal scroll */
|
54 |
+
overflow-wrap: break-word; /* break long words if needed */
|
55 |
+
}
|
56 |
+
|
57 |
+
.user {
|
58 |
+
align-self: flex-end; /* right side */
|
59 |
+
background: #414141;
|
60 |
+
color: #fff;
|
61 |
+
border-bottom-right-radius: 5px;
|
62 |
+
}
|
63 |
+
|
64 |
+
.bot {
|
65 |
+
align-self: flex-start; /* left side */
|
66 |
+
background: transparent;
|
67 |
+
color: #ffffff;
|
68 |
+
border-bottom-left-radius: 5px;
|
69 |
+
}
|
70 |
+
|
71 |
+
/* Terminal output style - matching exactly what appears in the terminal */
|
72 |
+
.message.bot pre {
|
73 |
+
font-family: monospace;
|
74 |
+
background-color: transparent; /* No background color */
|
75 |
+
color: inherit; /* Use the same text color as the parent */
|
76 |
+
padding: 0;
|
77 |
+
border: none;
|
78 |
+
width: 100%;
|
79 |
+
max-height: none; /* No height limit */
|
80 |
+
overflow-x: visible; /* No horizontal scrolling */
|
81 |
+
white-space: pre-wrap; /* Wrap text to prevent horizontal scrolling */
|
82 |
+
font-size: inherit;
|
83 |
+
line-height: 1.4;
|
84 |
+
}
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
.input-area {
|
89 |
+
position: fixed;
|
90 |
+
bottom: 1rem;
|
91 |
+
left: 50%;
|
92 |
+
transform: translateX(-50%);
|
93 |
+
width: 100%;
|
94 |
+
max-width: 95%; /* Match the width of chat container */
|
95 |
+
display: flex;
|
96 |
+
padding: 10px;
|
97 |
+
background: rgba(54, 54, 54, 0.7); /* make input area semi-transparent */
|
98 |
+
box-shadow: 0 -2px 5px rgba(0,0,0,0.05);
|
99 |
+
border-radius: 30px;
|
100 |
+
z-index: 10; /* Ensure input stays on top */
|
101 |
+
}
|
102 |
+
|
103 |
+
.input-area input {
|
104 |
+
flex: 1;
|
105 |
+
padding: 14px 18px;
|
106 |
+
border: 1px solid #1b1b1b;
|
107 |
+
box-shadow: #414141;
|
108 |
+
border-radius: 25px;
|
109 |
+
outline: none;
|
110 |
+
font-size: 1rem;
|
111 |
+
}
|
112 |
+
|
113 |
+
.input-area button {
|
114 |
+
margin-left: 10px;
|
115 |
+
padding: 0 20px;
|
116 |
+
border: none;
|
117 |
+
background: #1f1f1f;
|
118 |
+
color: white;
|
119 |
+
border-radius: 25px;
|
120 |
+
cursor: pointer;
|
121 |
+
font-size: 1rem;
|
122 |
+
transition: background 0.2s ease;
|
123 |
+
}
|
124 |
+
|
125 |
+
.input-area button:hover {
|
126 |
+
background: #6a6a6a;
|
127 |
+
}
|
128 |
+
|
129 |
+
.loader {
|
130 |
+
font-size: 0.9rem;
|
131 |
+
color: gray;
|
132 |
+
margin: 5px 0;
|
133 |
+
}
|
134 |
+
.chat-background{
|
135 |
+
position: fixed;
|
136 |
+
font-family: 'Courier New', Courier, monospace;
|
137 |
+
top: 40%;
|
138 |
+
left: 50%;
|
139 |
+
transform: translate(-50%, -50%);
|
140 |
+
font-weight: bold;
|
141 |
+
color: rgba(255, 255, 255, 0.8); /* semi-transparent */
|
142 |
+
text-align: center;
|
143 |
+
z-index: 0; /* below chat messages */
|
144 |
+
pointer-events: none; /* makes it "untouchable" */
|
145 |
+
transition: all 0.4s ease;
|
146 |
+
}
|
147 |
+
.chat-background{
|
148 |
+
display: inline-block;
|
149 |
+
text-align: left;
|
150 |
+
}
|
151 |
+
.chat-background #p1 {
|
152 |
+
font-size: 4rem;
|
153 |
+
}
|
154 |
+
|
155 |
+
.chat-background #p2 {
|
156 |
+
font-size: 3rem;
|
157 |
+
}
|
158 |
+
|
159 |
+
/* When blurred */
|
160 |
+
.chat-background.blurred {
|
161 |
+
filter: blur(12px); /* strong blur */
|
162 |
+
opacity: 0.4; /* fade slightly for readability */
|
163 |
+
transition: all 0.4s ease;
|
164 |
+
}
|
165 |
+
|
166 |
+
@media (max-width: 600px) {
|
167 |
+
.message {
|
168 |
+
max-width: 85%;
|
169 |
+
}
|
170 |
+
|
171 |
+
.chat-container {
|
172 |
+
padding: 10px;
|
173 |
+
max-width: 100%;
|
174 |
+
}
|
175 |
+
|
176 |
+
.input-area {
|
177 |
+
max-width: 95%;
|
178 |
+
bottom: 0.5rem;
|
179 |
+
}
|
180 |
+
|
181 |
+
.chat-background #p1 {
|
182 |
+
font-size: 3rem;
|
183 |
+
}
|
184 |
+
|
185 |
+
.chat-background #p2 {
|
186 |
+
font-size: 2rem;
|
187 |
+
}
|
188 |
+
}
|
misinformationui/static/test_server.py
ADDED
File without changes
|