Tollef Jørgensen
typo
0a6889b
raw
history blame
2.95 kB
import faiss
import gradio as gr
import numpy as np
import pandas as pd
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
idx = 0
dataset = load_dataset("tollefj/rettsavgjoerelser_100samples_embeddings")
model = SentenceTransformer("NbAiLab/nb-sbert-base")
df = dataset["train"].to_pandas()
def build_doc_frame(df, idx):
doc = df.iloc[idx]
# as df:
doc_df = pd.DataFrame(doc).T
# keep only sentences + embedding:
doc_df = doc_df[["url", "sentences", "embedding"]]
# unpack the sentences and embedding in separate rows
doc_df = doc_df.explode(["sentences", "embedding"])
return doc_df
def get_doc_embeddings(doc):
return np.array(doc.embedding.tolist(), dtype="float32")
def faiss_search(doc_url, query_str, K=5):
global idx
# find idx from url:
doc_idx = df[df.url == doc_url].index[0]
idx = int(doc_idx)
newdoc = build_doc_frame(df, idx)
embeddings = get_doc_embeddings(newdoc)
faiss.normalize_L2(embeddings)
index = faiss.IndexFlatIP(768)
index.add(embeddings)
target_emb = model.encode([query_str])
target_emb = np.array([target_emb.reshape(-1)])
faiss.normalize_L2(target_emb)
D, I = index.search(np.array(target_emb), K)
print(list(zip(D[0], I[0])))
# prettyprint the results:
pretty_results = []
for idx, score in zip(I[0], D[0]):
pretty_results.append((round(float(score), 3), newdoc.iloc[idx].sentences))
pretty_results_str = "\n".join([f"Score: {score}\t\t{sent}" for score, sent in pretty_results])
top_k_str = f"Top {K} results for: {query_str}"
# return str:
return f"{top_k_str}\n{pretty_results_str}"
# def DropdownSummary():
# next_opts = df.iloc[idx].summary.tolist()
# return gr.Dropdown.update(choices=next_opts, label="Velg fra oppsummeringene")
dropdown_opts = [doc.url for idx, doc in df.iterrows()]
with gr.Blocks() as demo:
gr.Label("Lovdata rettsavgjørelser - semantisk søk")
case_dropdown = gr.Dropdown(label="Velg en rettsavgjørelse", choices=dropdown_opts, default=dropdown_opts[0])
# when case_dropdown changes, update the summary dropdown:
# idx_label = gr.Label(f"Current index: {idx}")
query = gr.Textbox(
label="Søk etter setninger",
lines=1,
placeholder="Kollisjon mellom to kjøretøy.",
)
k_slider = gr.Slider(minimum=1, maximum=10, label="Antall treff", value=5, step=1)
search_btn = gr.Button("Søk")
output = gr.Textbox(label="Resultater", lines=10)
# from the selected URL, find the index in the df:
search_btn.click(faiss_search, inputs=[case_dropdown, query, k_slider], outputs=[output])
# clear_btn.click(None, inputs=[None, None], outputs=None)
# search_btn.click(faiss_search, inputs=[None, None, None], outputs=["text"])
# search_btn.click(faiss_search, inputs=[idx, query, k_slider], outputs=["text"])
demo.launch()