#!/usr/bin/env python3 """ Fixed SAM 2.1 Interface - Handles negative stride issues properly """ import torch import numpy as np from PIL import Image import matplotlib.pyplot as plt import gradio as gr from transformers import Sam2Model, Sam2Processor import warnings import io import base64 import os from datetime import datetime warnings.filterwarnings("ignore") # Global model instance to avoid reloading MODEL = None PROCESSOR = None DEVICE = None # Global state for saving CURRENT_MASK = None CURRENT_IMAGE_NAME = None CURRENT_POINTS = None def initialize_sam(model_size="small"): """Initialize SAM model once""" global MODEL, PROCESSOR, DEVICE if MODEL is None: DEVICE = "cuda" if torch.cuda.is_available() else "cpu" print(f"Initializing SAM 2.1 {model_size} on {DEVICE}...") model_name = f"facebook/sam2-hiera-{model_size}" MODEL = Sam2Model.from_pretrained(model_name).to(DEVICE) PROCESSOR = Sam2Processor.from_pretrained(model_name) print("āœ“ Model loaded successfully!") return MODEL, PROCESSOR, DEVICE def fix_image_array(image): """Fix image input for SAM processing - handles filepath, numpy array, or PIL Image""" if isinstance(image, str): # Handle filepath input from Gradio return Image.open(image).convert("RGB") elif isinstance(image, np.ndarray): # Make sure array is contiguous if not image.flags['C_CONTIGUOUS']: image = np.ascontiguousarray(image) # Ensure uint8 dtype if image.dtype != np.uint8: if image.max() <= 1.0: image = (image * 255).astype(np.uint8) else: image = image.astype(np.uint8) # Convert to PIL Image to avoid any stride issues return Image.fromarray(image).convert("RGB") elif isinstance(image, Image.Image): return image.convert("RGB") else: raise ValueError(f"Unsupported image type: {type(image)}") def apply_mask_post_processing(mask, stability_threshold=0.95): """Apply post-processing to refine mask size and quality""" import cv2 # Convert to binary mask binary_mask = (mask > 0).astype(np.uint8) # Apply morphological operations to clean up the mask kernel_size = max(3, int(mask.shape[0] * 0.01)) # Adaptive kernel size kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size)) # Close small holes binary_mask = cv2.morphologyEx(binary_mask, cv2.MORPH_CLOSE, kernel) # Remove small noise binary_mask = cv2.morphologyEx(binary_mask, cv2.MORPH_OPEN, kernel) return binary_mask.astype(np.float32) def apply_erosion_dilation(mask, erosion_dilation_value): """Apply erosion or dilation to adjust mask size""" import cv2 binary_mask = (mask > 0).astype(np.uint8) if erosion_dilation_value == 0: return mask kernel_size = abs(erosion_dilation_value) kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size)) if erosion_dilation_value > 0: # Dilate (make larger) binary_mask = cv2.dilate(binary_mask, kernel, iterations=1) else: # Erode (make smaller) binary_mask = cv2.erode(binary_mask, kernel, iterations=1) return binary_mask.astype(np.float32) def save_binary_mask(mask, image_name, points, mask_threshold, erosion_dilation, save_low_res=False, custom_folder_name=None): """Save binary mask to organized folder structure""" global CURRENT_MASK, CURRENT_IMAGE_NAME, CURRENT_POINTS try: # Store current state for saving CURRENT_MASK = mask CURRENT_IMAGE_NAME = image_name CURRENT_POINTS = points # Extract image name without extension and sanitize if image_name: base_name = os.path.splitext(os.path.basename(image_name))[0] # Remove any path separators and special characters base_name = base_name.replace('/', '_').replace('\\', '_').replace(':', '_').replace(' ', '_') else: base_name = f"image_{datetime.now().strftime('%Y%m%d_%H%M%S')}" # Choose folder tag: user-provided name if available, else 'default' folder_tag = None if custom_folder_name and str(custom_folder_name).strip(): folder_tag = str(custom_folder_name).strip().replace(' ', '_') else: folder_tag = "default" # Create folder structure: masks/// folder_name = f"masks/{base_name}/{folder_tag}" os.makedirs(folder_name, exist_ok=True) # Create binary mask (0 and 255 values) binary_mask = (mask > 0).astype(np.uint8) * 255 # Calculate low resolution dimensions if requested original_height, original_width = binary_mask.shape if save_low_res: # Calculate sqrt-based resolution sqrt_factor = int(np.sqrt(max(original_width, original_height))) low_res_width = sqrt_factor low_res_height = sqrt_factor print(f"Original mask size: {original_width}x{original_height}") print(f"Low-res mask size: {low_res_width}x{low_res_height}") # Save binary mask timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") # Sanitize filename - replace problematic characters threshold_str = f"{mask_threshold:.2f}".replace('.', 'p') # 0.30 -> 0p30 adj_str = f"{erosion_dilation:+d}".replace('+', 'plus').replace('-', 'minus') # +2 -> plus2, -2 -> minus2 saved_paths = [] # Save full resolution mask as JPEG with a simple filename mask_filename = "image.jpg" mask_path = os.path.join(folder_name, mask_filename) mask_image = Image.fromarray(binary_mask, mode='L') mask_image.save(mask_path, format="JPEG", quality=95, optimize=True) saved_paths.append(mask_path) # Save tensor mask (.pt) as float tensor (0.0/1.0) tensor_filename = "image.pt" tensor_path = os.path.join(folder_name, tensor_filename) torch.save(torch.from_numpy((mask > 0).astype(np.float32)), tensor_path) saved_paths.append(tensor_path) # Save low resolution mask if requested if save_low_res: # Resize mask to low resolution low_res_mask = mask_image.resize((low_res_width, low_res_height), Image.Resampling.NEAREST) low_res_filename = f"mask_lowres_{sqrt_factor}x{sqrt_factor}_t{threshold_str}_adj{adj_str}_{timestamp}.png" low_res_path = os.path.join(folder_name, low_res_filename) low_res_mask.save(low_res_path) saved_paths.append(low_res_path) # Also save metadata metadata = { "timestamp": timestamp, "points": points, "mask_threshold": mask_threshold, "erosion_dilation": erosion_dilation, "image_name": image_name, "original_resolution": f"{original_width}x{original_height}", "saved_paths": saved_paths, "low_resolution_saved": save_low_res } if save_low_res: metadata["low_resolution"] = f"{low_res_width}x{low_res_height}" metadata["sqrt_factor"] = sqrt_factor import json metadata_path = os.path.join(folder_name, f"metadata_{timestamp}.json") with open(metadata_path, 'w') as f: json.dump(metadata, f, indent=2) # Return appropriate message if save_low_res: return f"āœ… Masks saved:\nšŸ“ Full: {os.path.basename(mask_path)}\nšŸ“ Low-res: {os.path.basename(low_res_path)}" else: return f"āœ… Mask saved to: {os.path.basename(mask_path)}" except Exception as e: return f"āŒ Save failed: {str(e)}" def process_sam_segmentation(image, points_data, bbox_data, mode, image_name=None, top_k=3, mask_threshold=0.0, stability_score_threshold=0.95, erosion_dilation=0): """Main processing function with mask size controls - supports points and bounding boxes""" global CURRENT_MASK, CURRENT_IMAGE_NAME, CURRENT_POINTS if image is None: return None, None, "Please upload an image first." # Check input based on mode if mode == "Points": if not points_data or len(points_data) == 0: return None, None, "Please click on the image to select points." elif mode == "Bounding Box": if bbox_data is None: return None, None, "Please click two corners to define a bounding box." try: # Initialize model model, processor, device = initialize_sam() # Fix image pil_image = fix_image_array(image) # Prepare SAM inputs based on mode input_points = None input_labels = None input_boxes = None points = None if mode == "Points": # Extract points with positive/negative labels points = [] labels = [] for point_info in points_data: if isinstance(point_info, dict): points.append([point_info.get("x", 0), point_info.get("y", 0)]) labels.append(1 if point_info.get("positive", True) else 0) # 1 = positive, 0 = negative elif isinstance(point_info, (list, tuple)) and len(point_info) >= 2: points.append([point_info[0], point_info[1]]) labels.append(1) # Default to positive for old format if not points: return None, "No valid points found." print(f"Processing {len(points)} points: {points} with labels: {labels}") input_points = [[points]] input_labels = [[labels]] elif mode == "Bounding Box": # Use bounding box bbox = bbox_data # [x1, y1, x2, y2] print(f"Processing bounding box: {bbox}") input_boxes = [[bbox]] # For visualization, store the bbox corners as points points = [[bbox[0], bbox[1]], [bbox[2], bbox[3]]] # Process with SAM processor_inputs = { "images": pil_image, "return_tensors": "pt" } # Add points or boxes based on mode if mode == "Points": processor_inputs["input_points"] = input_points processor_inputs["input_labels"] = input_labels elif mode == "Bounding Box": processor_inputs["input_boxes"] = input_boxes inputs = processor(**processor_inputs).to(device) # Generate masks with multiple outputs for better control with torch.no_grad(): outputs = model(**inputs, multimask_output=True) # Get masks and scores masks = processor.post_process_masks( outputs.pred_masks.cpu(), inputs["original_sizes"] )[0] scores = outputs.iou_scores.cpu().numpy().flatten() # Get top-k masks top_indices = np.argsort(scores)[::-1][:top_k] # Apply mask threshold to control size best_mask = masks[0, top_indices[0]].numpy() best_score = scores[top_indices[0]] # Apply threshold to control mask size if mask_threshold > 0: best_mask = (best_mask > mask_threshold).astype(np.float32) # Additional mask processing for size control best_mask = apply_mask_post_processing(best_mask, stability_score_threshold) # Apply erosion/dilation for fine size control if erosion_dilation != 0: best_mask = apply_erosion_dilation(best_mask, erosion_dilation) # Store current state for saving CURRENT_MASK = best_mask CURRENT_IMAGE_NAME = image_name CURRENT_POINTS = points # Create dual visualizations original_with_input = create_original_with_input_visualization(pil_image, points, bbox_data, mode) mask_result = create_mask_visualization(pil_image, best_mask, best_score, mask_threshold) status = f"āœ“ Generated mask with score: {float(best_score):.3f}\nšŸ”„ Ready to save!" return original_with_input, mask_result, status except Exception as e: print(f"Error in processing: {e}") return None, None, f"Error: {str(e)}" def create_original_with_input_visualization(pil_image, points, bbox, mode, negative_points=None): """Create visualization of original image with input points/bbox overlay""" # Convert PIL to numpy for matplotlib img_array = np.array(pil_image) fig, ax = plt.subplots(1, 1, figsize=(8, 6)) # Show original image only ax.imshow(img_array) # Show input visualization based on mode if mode == "Points": total_points = 0 # Show positive points (green) if points: for point in points: ax.plot(point[0], point[1], 'go', markersize=12, markeredgewidth=3, markerfacecolor='lime') total_points += len(points) # Show negative points (red) if negative_points: for point in negative_points: ax.plot(point[0], point[1], 'ro', markersize=12, markeredgewidth=3, markerfacecolor='red') total_points += len(negative_points) pos_count = len(points) if points else 0 neg_count = len(negative_points) if negative_points else 0 title_suffix = f"Points: {pos_count}+ {neg_count}-" if neg_count > 0 else f"Points: {pos_count}" elif mode == "Bounding Box" and bbox: # Show bounding box x1, y1, x2, y2 = bbox width = x2 - x1 height = y2 - y1 # Draw bounding box rectangle from matplotlib.patches import Rectangle rect = Rectangle((x1, y1), width, height, linewidth=3, edgecolor='lime', facecolor='none') ax.add_patch(rect) # Show corner points ax.plot([x1, x2], [y1, y2], 'go', markersize=8, markeredgewidth=2, markerfacecolor='lime') title_suffix = f"BBox: {int(width)}Ɨ{int(height)}" else: title_suffix = "No input" ax.set_title(f"Input Selection ({title_suffix})", fontsize=14) ax.axis('off') # Convert to numpy array fig.canvas.draw() buf = fig.canvas.buffer_rgba() result_array = np.asarray(buf) # Convert RGBA to RGB result_array = result_array[:, :, :3] plt.close(fig) return result_array def create_mask_visualization(pil_image, mask, score, mask_threshold=0.0): """Create clean mask visualization without input overlays""" # Convert PIL to numpy for matplotlib img_array = np.array(pil_image) fig, ax = plt.subplots(1, 1, figsize=(8, 6)) # Show original image ax.imshow(img_array) # Overlay mask in red mask_overlay = np.zeros((*mask.shape, 4)) mask_overlay[mask > 0] = [1, 0, 0, 0.6] # Red with transparency ax.imshow(mask_overlay) ax.set_title(f"Generated Mask (Score: {float(score):.3f}, Threshold: {mask_threshold:.2f})", fontsize=14) ax.axis('off') # Convert to numpy array fig.canvas.draw() buf = fig.canvas.buffer_rgba() result_array = np.asarray(buf) # Convert RGBA to RGB result_array = result_array[:, :, :3] plt.close(fig) return result_array def create_interface(): """Create a simplified single-image annotator interface.""" with gr.Blocks(title="SAM 2.1 - Simple Annotator", theme=gr.themes.Soft(), css=""" .negative-mode-checkbox label { color: #d00000 !important; font-weight: 800 !important; font-size: 16px !important; } """) as interface: gr.HTML("""

šŸŽÆ SAM 2.1 Simple Annotator

Upload one image, click to add positive/negative points, generate mask, and save.

""") # Image input (single image) - directly annotate; this serves as uploader too # Users can upload by clicking the annotatable image component below. image_input = gr.Image( label=None, type="filepath", height=0, visible=False ) # Main layout: Selected Points on the left, annotatable image in the center, preview on the right with gr.Row(): with gr.Column(scale=1): points_display = gr.JSON(label="šŸ“ Selected Points", value=[], visible=True) with gr.Column(scale=3): # Negative mode toggle with clear red styling negative_point_mode = gr.Checkbox( label="āž– NEGATIVE POINT MODE", value=False, info="šŸ”“ Enable to add negative points (shown in red)", interactive=True, elem_classes="negative-mode-checkbox" ) original_with_input = gr.Image( label="šŸ“ Click to Annotate (toggle negative mode to exclude)", height=640, interactive=True ) with gr.Column(scale=1): points_overlay = gr.Image(label="šŸ“ Points Preview (green=positive, red=negative)", height=720, interactive=False) # Action buttons with gr.Row(): generate_btn = gr.Button("šŸŽÆ Generate Mask", variant="primary", size="lg") clear_btn = gr.Button("šŸ—‘ļø Clear Points", variant="secondary", size="lg") # Mask result under buttons with gr.Row(): mask_result = gr.Image(label="šŸŽ­ Generated Mask", height=512) # Save controls under mask with gr.Row(): mask_name_input = gr.Textbox(label="Folder name (optional)", placeholder="e.g., michael_phelps_bottom_left") save_btn = gr.Button("šŸ’¾ Save Mask", variant="stop", size="lg") # Status with gr.Row(): status_text = gr.Textbox(label="šŸ“Š Status", interactive=False, lines=3) # State to store points only points_state = gr.State([]) # Event handlers def on_image_click(image, current_points, negative_mode, evt: gr.SelectData): """Handle clicks on the image for point annotations only.""" if evt.index is not None and image is not None: x, y = evt.index try: pil_image = fix_image_array(image) is_negative = negative_mode new_point = {"x": int(x), "y": int(y), "positive": not is_negative} updated_points = current_points + [new_point] positive_points = [[p["x"], p["y"]] for p in updated_points if p.get("positive", True)] negative_points = [[p["x"], p["y"]] for p in updated_points if not p.get("positive", True)] updated_visualization = create_original_with_input_visualization( pil_image, positive_points, None, "Points", negative_points ) point_type = "positive" if not is_negative else "negative" pos_count = len(positive_points) neg_count = len(negative_points) return updated_points, updated_points, updated_visualization, ( f"Added {point_type} point at ({x}, {y}). Total: {pos_count} positive, {neg_count} negative points." ) except Exception as e: print(f"Error in visualization: {e}") return current_points, current_points, None, f"Error updating visualization: {str(e)}" return current_points, current_points, None, "Click on the image to add points." def on_image_upload(image): """Handle image upload and show it for annotation.""" if image is not None: try: pil_image = fix_image_array(image) img_array = np.array(pil_image) # Populate both the annotation image (left) and the points preview (right) return img_array, img_array, [], [], "Image uploaded. Click on the left image to add points (enable negative mode for exclusion)." except Exception as e: return None, None, [], [], f"Error loading image: {str(e)}" return None, None, [], [], "No image uploaded." def clear_all_points(image): """Clear points and keep the image visible for annotation.""" try: if image is not None: pil_image = fix_image_array(image) img_array = np.array(pil_image) return [], [], img_array, img_array, None, "All points cleared. You can continue annotating." except Exception: pass return [], [], None, None, None, "All points cleared." def generate_segmentation(image, points): """Generate a single segmentation mask using points only.""" # Determine image name if isinstance(image, str): image_name = os.path.basename(image) else: # Prefer an explicit friendly default if metadata lacks a good name image_name = None if hasattr(image, 'orig_name'): image_name = image.orig_name elif isinstance(image, dict) and 'orig_name' in image: image_name = image['orig_name'] elif hasattr(image, 'name'): image_name = image.name if not image_name or 'tmp' in str(image_name).lower() or 'uploaded_image' in str(image_name).lower(): image_name = "michael_phelps_bottom_left.jpg" # Run segmentation (points mode) _, mask_img, status = process_sam_segmentation( image, points, None, "Points", image_name, 1, 0.0, 0.95, 0 ) if mask_img is not None: status += f"\nšŸ“ Image: {os.path.basename(image_name)}" return mask_img, status def save_current_mask(custom_folder_name): """Save the currently generated mask.""" global CURRENT_MASK, CURRENT_IMAGE_NAME, CURRENT_POINTS if CURRENT_MASK is None: return "āŒ No mask to save. Generate a mask first." if CURRENT_POINTS is None: return "āŒ No points available. Generate a mask first." return save_binary_mask(CURRENT_MASK, CURRENT_IMAGE_NAME, CURRENT_POINTS, 0.0, 0, False, custom_folder_name=(custom_folder_name or None)) # Wire events # Let the annotatable image also handle image uploads (drag & drop / click upload) original_with_input.upload( on_image_upload, inputs=[original_with_input], outputs=[original_with_input, points_overlay, points_state, points_display, status_text] ) original_with_input.select( on_image_click, inputs=[original_with_input, points_state, negative_point_mode], outputs=[points_state, points_display, points_overlay, status_text] ) generate_btn.click( generate_segmentation, inputs=[original_with_input, points_state], outputs=[mask_result, status_text] ) clear_btn.click( clear_all_points, inputs=[original_with_input], outputs=[points_state, points_display, points_overlay, original_with_input, mask_result, status_text] ) save_btn.click( save_current_mask, inputs=[mask_name_input], outputs=[status_text] ) return interface def main(): """Main function""" print("šŸš€ Starting Fixed SAM 2.1 Interface...") interface = create_interface() print("🌐 Launching web interface...") print("šŸ“ Click on objects in images to segment them!") interface.launch( server_port=int(os.environ.get("GRADIO_SERVER_PORT", 7860)), share=False, inbrowser=False, # Don't auto-open browser in server environment show_error=True ) if __name__ == "__main__": main()