#!/usr/bin/env python3 """ SAM 2.1 Interface """ import torch import numpy as np from PIL import Image import matplotlib.pyplot as plt import gradio as gr from transformers import Sam2Model, Sam2Processor import warnings import io import base64 import os from datetime import datetime # Grounding DINO will be imported dynamically in the initialization function warnings.filterwarnings("ignore") # Global model instance to avoid reloading MODEL = None PROCESSOR = None DEVICE = None # Global Grounding DINO instance GROUNDING_DINO = None # Global state for saving CURRENT_MASK = None CURRENT_IMAGE_NAME = None CURRENT_POINTS = None def initialize_sam(model_size="small"): """Initialize SAM model once""" global MODEL, PROCESSOR, DEVICE if MODEL is None: DEVICE = "cuda" if torch.cuda.is_available() else "cpu" print(f"Initializing SAM 2.1 {model_size} on {DEVICE}...") model_name = f"facebook/sam2-hiera-{model_size}" MODEL = Sam2Model.from_pretrained(model_name).to(DEVICE) PROCESSOR = Sam2Processor.from_pretrained(model_name) print("✓ Model loaded successfully!") return MODEL, PROCESSOR, DEVICE def initialize_grounding_dino(): """Initialize Grounding DINO model once""" global GROUNDING_DINO, DEVICE if GROUNDING_DINO is None: if DEVICE is None: DEVICE = "cuda" if torch.cuda.is_available() else "cpu" print(f"Initializing Grounding DINO on {DEVICE}...") try: # Use Hugging Face model for Grounding DINO from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection model_id = "IDEA-RESEARCH/grounding-dino-base" GROUNDING_DINO = { 'processor': AutoProcessor.from_pretrained(model_id), 'model': AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(DEVICE) } print("✓ Grounding DINO loaded successfully!") except Exception as e: print(f"❌ Failed to load Grounding DINO: {e}") print("Note: Falling back to manual point selection only") GROUNDING_DINO = None return GROUNDING_DINO def detect_objects_with_text(image, text_prompt, confidence_threshold=0.25): """Use Grounding DINO to detect objects based on text prompt""" global GROUNDING_DINO try: # Initialize Grounding DINO if needed grounding_dino = initialize_grounding_dino() if grounding_dino is None: return None, "❌ Grounding DINO not available" # Fix image format pil_image = fix_image_array(image) # Prepare inputs for Grounding DINO processor = grounding_dino['processor'] model = grounding_dino['model'] # Process inputs inputs = processor(images=pil_image, text=text_prompt, return_tensors="pt").to(DEVICE) # Run inference with torch.no_grad(): outputs = model(**inputs) # Post-process results results = processor.post_process_grounded_object_detection( outputs, input_ids=inputs.input_ids, threshold=confidence_threshold, text_threshold=0.25, target_sizes=[pil_image.size[::-1]] # (height, width) )[0] if len(results['boxes']) == 0: return None, f"No objects found for prompt: '{text_prompt}'" # Convert boxes to the format expected by SAM [x1, y1, x2, y2] detected_boxes = [] for box in results['boxes']: x1, y1, x2, y2 = box.tolist() detected_boxes.append([int(x1), int(y1), int(x2), int(y2)]) return detected_boxes, f"✓ Found {len(detected_boxes)} object(s) for '{text_prompt}'" except Exception as e: return None, f"❌ Detection failed: {str(e)}" def fix_image_array(image): """Fix image input for SAM processing - handles filepath, numpy array, or PIL Image""" if isinstance(image, str): # Handle filepath input from Gradio return Image.open(image).convert("RGB") elif isinstance(image, np.ndarray): # Make sure array is contiguous if not image.flags['C_CONTIGUOUS']: image = np.ascontiguousarray(image) # Ensure uint8 dtype if image.dtype != np.uint8: if image.max() <= 1.0: image = (image * 255).astype(np.uint8) else: image = image.astype(np.uint8) # Convert to PIL Image to avoid any stride issues return Image.fromarray(image).convert("RGB") elif isinstance(image, Image.Image): return image.convert("RGB") else: raise ValueError(f"Unsupported image type: {type(image)}") def apply_mask_post_processing(mask, stability_threshold=0.95): """Apply post-processing to refine mask size and quality""" import cv2 # Convert to binary mask binary_mask = (mask > 0).astype(np.uint8) # Apply morphological operations to clean up the mask kernel_size = max(3, int(mask.shape[0] * 0.01)) # Adaptive kernel size kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size)) # Close small holes binary_mask = cv2.morphologyEx(binary_mask, cv2.MORPH_CLOSE, kernel) # Remove small noise binary_mask = cv2.morphologyEx(binary_mask, cv2.MORPH_OPEN, kernel) return binary_mask.astype(np.float32) def apply_erosion_dilation(mask, erosion_dilation_value): """Apply erosion or dilation to adjust mask size""" import cv2 binary_mask = (mask > 0).astype(np.uint8) if erosion_dilation_value == 0: return mask kernel_size = abs(erosion_dilation_value) kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size)) if erosion_dilation_value > 0: # Dilate (make larger) binary_mask = cv2.dilate(binary_mask, kernel, iterations=1) else: # Erode (make smaller) binary_mask = cv2.erode(binary_mask, kernel, iterations=1) return binary_mask.astype(np.float32) def save_binary_mask(mask, image_name, points, mask_threshold, erosion_dilation, save_low_res=False, custom_folder_name=None): """Save binary mask to organized folder structure""" global CURRENT_MASK, CURRENT_IMAGE_NAME, CURRENT_POINTS try: # Store current state for saving CURRENT_MASK = mask CURRENT_IMAGE_NAME = image_name CURRENT_POINTS = points # Extract image name without extension and sanitize if image_name: base_name = os.path.splitext(os.path.basename(image_name))[0] # Remove any path separators and special characters base_name = base_name.replace('/', '_').replace('\\', '_').replace(':', '_').replace(' ', '_') else: base_name = f"image_{datetime.now().strftime('%Y%m%d_%H%M%S')}" # Choose folder tag: user-provided name if available, else 'default' folder_tag = None if custom_folder_name and str(custom_folder_name).strip(): folder_tag = str(custom_folder_name).strip().replace(' ', '_') else: folder_tag = "default" # Create folder structure: masks/// folder_name = f"masks/{base_name}/{folder_tag}" os.makedirs(folder_name, exist_ok=True) # Create binary mask (0 and 255 values) binary_mask = (mask > 0).astype(np.uint8) * 255 # Calculate low resolution dimensions if requested original_height, original_width = binary_mask.shape if save_low_res: # Calculate sqrt-based resolution sqrt_factor = int(np.sqrt(max(original_width, original_height))) low_res_width = sqrt_factor low_res_height = sqrt_factor print(f"Original mask size: {original_width}x{original_height}") print(f"Low-res mask size: {low_res_width}x{low_res_height}") # Save binary mask timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") # Sanitize filename - replace problematic characters threshold_str = f"{mask_threshold:.2f}".replace('.', 'p') # 0.30 -> 0p30 adj_str = f"{erosion_dilation:+d}".replace('+', 'plus').replace('-', 'minus') # +2 -> plus2, -2 -> minus2 saved_paths = [] # Save full resolution mask as JPEG with a simple filename mask_filename = "image.jpg" mask_path = os.path.join(folder_name, mask_filename) mask_image = Image.fromarray(binary_mask, mode='L') mask_image.save(mask_path, format="JPEG", quality=95, optimize=True) saved_paths.append(mask_path) # Save tensor mask (.pt) as float tensor (0.0/1.0) tensor_filename = "image.pt" tensor_path = os.path.join(folder_name, tensor_filename) torch.save(torch.from_numpy((mask > 0).astype(np.float32)), tensor_path) saved_paths.append(tensor_path) # Save low resolution mask if requested if save_low_res: # Resize mask to low resolution low_res_mask = mask_image.resize((low_res_width, low_res_height), Image.Resampling.NEAREST) low_res_filename = f"mask_lowres_{sqrt_factor}x{sqrt_factor}_t{threshold_str}_adj{adj_str}_{timestamp}.png" low_res_path = os.path.join(folder_name, low_res_filename) low_res_mask.save(low_res_path) saved_paths.append(low_res_path) # Also save metadata metadata = { "timestamp": timestamp, "points": points, "mask_threshold": mask_threshold, "erosion_dilation": erosion_dilation, "image_name": image_name, "original_resolution": f"{original_width}x{original_height}", "saved_paths": saved_paths, "low_resolution_saved": save_low_res } if save_low_res: metadata["low_resolution"] = f"{low_res_width}x{low_res_height}" metadata["sqrt_factor"] = sqrt_factor import json metadata_path = os.path.join(folder_name, f"metadata_{timestamp}.json") with open(metadata_path, 'w') as f: json.dump(metadata, f, indent=2) # Return appropriate message if save_low_res: return f"✅ Masks saved:\n📁 Full: {os.path.basename(mask_path)}\n📁 Low-res: {os.path.basename(low_res_path)}" else: return f"✅ Mask saved to: {os.path.basename(mask_path)}" except Exception as e: return f"❌ Save failed: {str(e)}" def process_sam_segmentation(image, points_data, bbox_data, mode, image_name=None, top_k=3, mask_threshold=0.0, stability_score_threshold=0.95, erosion_dilation=0, text_prompt=None, confidence_threshold=0.25): """Main processing function with mask size controls - supports points, bounding boxes, and text prompts""" global CURRENT_MASK, CURRENT_IMAGE_NAME, CURRENT_POINTS if image is None: return None, None, "Please upload an image first." # Check input based on mode if mode == "Points": if not points_data or len(points_data) == 0: return None, None, "Please click on the image to select points." elif mode == "Bounding Box": if bbox_data is None: return None, None, "Please click two corners to define a bounding box." elif mode == "Text Prompt": if not text_prompt or not text_prompt.strip(): return None, None, "Please enter a text prompt to detect objects." try: # Initialize model model, processor, device = initialize_sam() # Fix image pil_image = fix_image_array(image) # Prepare SAM inputs based on mode input_points = None input_labels = None input_boxes = None points = None if mode == "Points": # Extract points with positive/negative labels points = [] labels = [] for point_info in points_data: if isinstance(point_info, dict): points.append([point_info.get("x", 0), point_info.get("y", 0)]) labels.append(1 if point_info.get("positive", True) else 0) # 1 = positive, 0 = negative elif isinstance(point_info, (list, tuple)) and len(point_info) >= 2: points.append([point_info[0], point_info[1]]) labels.append(1) # Default to positive for old format if not points: return None, "No valid points found." print(f"Processing {len(points)} points: {points} with labels: {labels}") input_points = [[points]] input_labels = [[labels]] elif mode == "Bounding Box": # Use bounding box bbox = bbox_data # [x1, y1, x2, y2] print(f"Processing bounding box: {bbox}") input_boxes = [[bbox]] # For visualization, store the bbox corners as points points = [[bbox[0], bbox[1]], [bbox[2], bbox[3]]] elif mode == "Text Prompt": # Use Grounding DINO to detect objects from text prompt detected_boxes, detection_status = detect_objects_with_text(pil_image, text_prompt, confidence_threshold) if detected_boxes is None: return None, None, detection_status # Use the first detected bounding box (highest confidence) bbox = detected_boxes[0] print(f"Using detected bounding box: {bbox}") input_boxes = [[bbox]] # For visualization, store the bbox corners as points points = [[bbox[0], bbox[1]], [bbox[2], bbox[3]]] # Process with SAM processor_inputs = { "images": pil_image, "return_tensors": "pt" } # Add points and/or boxes based on what's available if input_points is not None: processor_inputs["input_points"] = input_points processor_inputs["input_labels"] = input_labels if input_boxes is not None: processor_inputs["input_boxes"] = input_boxes inputs = processor(**processor_inputs).to(device) # Generate masks with multiple outputs for better control with torch.no_grad(): outputs = model(**inputs, multimask_output=True) # Get masks and scores masks = processor.post_process_masks( outputs.pred_masks.cpu(), inputs["original_sizes"] )[0] scores = outputs.iou_scores.cpu().numpy().flatten() # Get top-k masks and process all of them top_indices = np.argsort(scores)[::-1][:top_k] processed_masks = [] mask_scores = [] for i, idx in enumerate(top_indices): mask = masks[0, idx].numpy() score = scores[idx] # Apply threshold to control mask size if mask_threshold > 0: mask = (mask > mask_threshold).astype(np.float32) # Additional mask processing for size control mask = apply_mask_post_processing(mask, stability_score_threshold) # Apply erosion/dilation for fine size control if erosion_dilation != 0: mask = apply_erosion_dilation(mask, erosion_dilation) processed_masks.append(mask) mask_scores.append(score) # Store current state for saving (use first mask as default) CURRENT_MASK = processed_masks[0] CURRENT_IMAGE_NAME = image_name CURRENT_POINTS = points # Create visualizations for the first mask original_with_input = create_original_with_input_visualization(pil_image, points, bbox_data, mode) mask_result = create_mask_visualization(pil_image, processed_masks[0], mask_scores[0], mask_threshold) status = f"✓ Generated {len(processed_masks)} masks\n🔄 Use navigation to browse masks" # Return multiple masks and related data return original_with_input, mask_result, status, processed_masks, mask_scores except Exception as e: print(f"Error in processing: {e}") return None, None, f"Error: {str(e)}" def create_original_with_input_visualization(pil_image, points, bbox, mode, negative_points=None): """Create visualization of original image with input points/bbox overlay""" # Convert PIL to numpy for matplotlib img_array = np.array(pil_image) fig, ax = plt.subplots(1, 1, figsize=(8, 6)) # Show original image only ax.imshow(img_array) # Show input visualization based on mode if mode == "Points": total_points = 0 # Show positive points (green) if points: for point in points: ax.plot(point[0], point[1], 'go', markersize=12, markeredgewidth=3, markerfacecolor='lime') total_points += len(points) # Show negative points (red) if negative_points: for point in negative_points: ax.plot(point[0], point[1], 'ro', markersize=12, markeredgewidth=3, markerfacecolor='red') total_points += len(negative_points) pos_count = len(points) if points else 0 neg_count = len(negative_points) if negative_points else 0 title_suffix = f"Points: {pos_count}+ {neg_count}-" if neg_count > 0 else f"Points: {pos_count}" elif mode == "Bounding Box" and bbox: # Show bounding box x1, y1, x2, y2 = bbox width = x2 - x1 height = y2 - y1 # Draw bounding box rectangle from matplotlib.patches import Rectangle rect = Rectangle((x1, y1), width, height, linewidth=3, edgecolor='lime', facecolor='none') ax.add_patch(rect) # Show corner points ax.plot([x1, x2], [y1, y2], 'go', markersize=8, markeredgewidth=2, markerfacecolor='lime') title_suffix = f"BBox: {int(width)}×{int(height)}" else: title_suffix = "No input" ax.set_title(f"Input Selection ({title_suffix})", fontsize=14) ax.axis('off') # Convert to numpy array fig.canvas.draw() buf = fig.canvas.buffer_rgba() result_array = np.asarray(buf) # Convert RGBA to RGB result_array = result_array[:, :, :3] plt.close(fig) return result_array def create_mask_visualization(pil_image, mask, score, mask_threshold=0.0): """Create clean mask visualization without input overlays""" # Convert PIL to numpy for matplotlib img_array = np.array(pil_image) fig, ax = plt.subplots(1, 1, figsize=(8, 6)) # Show original image ax.imshow(img_array) # Overlay mask in red mask_overlay = np.zeros((*mask.shape, 4)) mask_overlay[mask > 0] = [1, 0, 0, 0.6] # Red with transparency ax.imshow(mask_overlay) ax.set_title(f"Generated Mask (Score: {float(score):.3f}, Threshold: {mask_threshold:.2f})", fontsize=14) ax.axis('off') # Convert to numpy array fig.canvas.draw() buf = fig.canvas.buffer_rgba() result_array = np.asarray(buf) # Convert RGBA to RGB result_array = result_array[:, :, :3] plt.close(fig) return result_array def create_interface(): """Create a simplified single-image annotator interface.""" with gr.Blocks(title="SAM 2.1 - Simple Annotator", theme=gr.themes.Soft(), css=""" .negative-mode-checkbox label { color: #d00000 !important; font-weight: 800 !important; font-size: 16px !important; } """) as interface: gr.HTML("""

🎯 AI-Powered Image Segmentation

SAM 2.1 + Grounding DINO

✨ Just type what you want to segment! Try "person", "face", "car", "dog" - or click points manually.

🎭 Generate multiple mask options and pick your favorite!


Acknowledgment: This is a GUI interface for research by Meta AI (SAM 2.1) and IDEA Research (Grounding DINO).
All credit goes to the original researchers. This tool only provides an easy-to-use web interface.

""") # Image input (single image) - directly annotate; this serves as uploader too # Users can upload by clicking the annotatable image component below. image_input = gr.Image( label=None, type="filepath", height=0, visible=False ) # Text prompt input with clear button with gr.Row(): text_prompt_input = gr.Textbox( label="🔍 Text Prompt (Optional)", placeholder="Type what to segment (e.g., 'person', 'car', 'dog') and press Enter", value="snoopy", interactive=True, info="💡 Text = auto-detection | Empty + clicking = manual points | Text takes priority if both provided", scale=4 ) clear_text_btn = gr.Button("🗑️ Clear Text", variant="secondary", scale=1) # Number of masks to generate num_masks = gr.Slider( minimum=1, maximum=5, value=3, step=1, label="🎭 Number of Masks to Generate", info="Generate multiple mask options to choose from" ) # Main layout: Selected Points on the left, annotatable image in the center, preview on the right with gr.Row(): with gr.Column(scale=1): clear_points_btn = gr.Button("🗑️ Clear Points", variant="secondary", size="sm") points_display = gr.JSON(label="📍 Selected Points", value=[], visible=True) with gr.Column(scale=3): # Negative mode toggle with clear red styling negative_point_mode = gr.Checkbox( label="➖ NEGATIVE POINT MODE", value=False, info="🔴 Enable to add negative points (shown in red)", interactive=True, elem_classes="negative-mode-checkbox" ) original_with_input = gr.Image( label="📍 Click to Annotate (toggle negative mode to exclude)", height=640, interactive=True, value="data/snoopy.jpg" ) with gr.Column(scale=1): points_overlay = gr.Image(label="📍 Points Preview (green=positive, red=negative)", height=720, interactive=False) # Action buttons with gr.Row(): generate_btn = gr.Button("🎯 Generate Mask", variant="primary", size="lg") # Mask result with navigation with gr.Row(): mask_result = gr.Image(label="🎭 Generated Mask", height=512) # Mask navigation controls with gr.Row(): prev_mask_btn = gr.Button("⬅️ Previous", variant="secondary", size="sm") mask_info = gr.Textbox( label="Mask Info", value="No masks generated yet", interactive=False, scale=2 ) next_mask_btn = gr.Button("➡️ Next", variant="secondary", size="sm") # Save controls under mask with gr.Row(): mask_name_input = gr.Textbox(label="Folder name (optional)", placeholder="e.g., Glasses", value="Glasses", scale=2) format_selector = gr.Radio( choices=["PNG", "JPG", "PT"], value="PNG", label="📁 Download Format", scale=1 ) save_btn = gr.Button("💾 Prepare for saving", variant="stop", size="lg", scale=1) # Status and Download with gr.Row(): status_text = gr.Textbox(label="📊 Status", interactive=False, lines=3, scale=2) download_file = gr.File(label="📥 Download", visible=False, scale=1) # State to store points and masks points_state = gr.State([]) masks_data = gr.State({"masks": [], "scores": [], "image": None}) # Store all mask data current_mask_index = gr.State(0) # Current mask being viewed # Event handlers def on_image_click(image, current_points, negative_mode, evt: gr.SelectData): """Handle clicks on the image for point annotations only.""" if evt.index is not None and image is not None: x, y = evt.index try: pil_image = fix_image_array(image) is_negative = negative_mode new_point = {"x": int(x), "y": int(y), "positive": not is_negative} updated_points = current_points + [new_point] positive_points = [[p["x"], p["y"]] for p in updated_points if p.get("positive", True)] negative_points = [[p["x"], p["y"]] for p in updated_points if not p.get("positive", True)] updated_visualization = create_original_with_input_visualization( pil_image, positive_points, None, "Points", negative_points ) point_type = "positive" if not is_negative else "negative" pos_count = len(positive_points) neg_count = len(negative_points) return updated_points, updated_points, updated_visualization, ( f"Added {point_type} point at ({x}, {y}). Total: {pos_count} positive, {neg_count} negative points." ) except Exception as e: print(f"Error in visualization: {e}") return current_points, current_points, None, f"Error updating visualization: {str(e)}" return current_points, current_points, None, "Click on the image to add points." def on_image_upload(image): """Handle image upload and show it for annotation.""" if image is not None: try: pil_image = fix_image_array(image) img_array = np.array(pil_image) # Populate both the annotation image (left) and the points preview (right) return img_array, img_array, [], [], "Image uploaded. Click on the left image to add points (enable negative mode for exclusion)." except Exception as e: return None, None, [], [], f"Error loading image: {str(e)}" return None, None, [], [], "No image uploaded." def clear_all_points(image): """Clear points and keep the image visible for annotation.""" try: if image is not None: pil_image = fix_image_array(image) img_array = np.array(pil_image) return [], [], img_array, img_array, None, "All points cleared. You can continue annotating." except Exception: pass return [], [], None, None, None, "All points cleared." def clear_text_prompt(): """Clear the text prompt.""" return "", "Text prompt cleared. You can now use manual points." def generate_segmentation(image, points, text_prompt, num_masks_to_generate): """Generate multiple segmentation masks - auto-detects input type.""" # Determine image name if isinstance(image, str): image_name = os.path.basename(image) else: # Prefer an explicit friendly default if metadata lacks a good name image_name = None if hasattr(image, 'orig_name'): image_name = image.orig_name elif isinstance(image, dict) and 'orig_name' in image: image_name = image['orig_name'] elif hasattr(image, 'name'): image_name = image.name if not image_name or 'tmp' in str(image_name).lower() or 'uploaded_image' in str(image_name).lower(): image_name = "michael_phelps_bottom_left.jpg" # Auto-detect input type and run segmentation has_text = text_prompt and text_prompt.strip() has_points = points and len(points) > 0 if has_text and has_points: # Combine text detection with manual point refinement status_info = "🎯 Combining text detection with manual point refinement" # First, detect with text to get initial bounding box detected_boxes, detection_status = detect_objects_with_text(image, text_prompt, 0.25) if detected_boxes: # Use the detected bounding box AND manual points together bbox = detected_boxes[0] # Use first detection as guidance # Process with both bounding box and points # The points will be used to refine the segmentation within the detected area _, mask_img, status, masks, scores = process_sam_segmentation( image, points, bbox, "Points", image_name, int(num_masks_to_generate), 0.0, 0.95, 0, None, 0.25 ) status = f"{status_info}\n✓ Text: {detection_status}\n✓ Using {len(points)} manual points for refinement\n{status}" masks_data_dict = {"masks": masks, "scores": scores, "image": image} return mask_img, status, masks_data_dict, 0, f"Mask 1 of {len(masks)} (Score: {scores[0]:.3f})" else: # Fall back to points only if text detection fails _, mask_img, status, masks, scores = process_sam_segmentation( image, points, None, "Points", image_name, int(num_masks_to_generate), 0.0, 0.95, 0, None, 0.25 ) status = f"🔄 Text detection failed, using {len(points)} manual points only\n{status}" masks_data_dict = {"masks": masks, "scores": scores, "image": image} return mask_img, status, masks_data_dict, 0, f"Mask 1 of {len(masks)} (Score: {scores[0]:.3f})" elif has_text: # Use text prompt _, mask_img, status, masks, scores = process_sam_segmentation( image, None, None, "Text Prompt", image_name, int(num_masks_to_generate), 0.0, 0.95, 0, text_prompt, 0.25 ) masks_data_dict = {"masks": masks, "scores": scores, "image": image} return mask_img, status, masks_data_dict, 0, f"Mask 1 of {len(masks)} (Score: {scores[0]:.3f})" elif has_points: # Use points _, mask_img, status, masks, scores = process_sam_segmentation( image, points, None, "Points", image_name, int(num_masks_to_generate), 0.0, 0.95, 0, None, 0.25 ) masks_data_dict = {"masks": masks, "scores": scores, "image": image} return mask_img, status, masks_data_dict, 0, f"Mask 1 of {len(masks)} (Score: {scores[0]:.3f})" else: return None, "❌ Please either enter a text prompt or click points on the image.", {"masks": [], "scores": [], "image": None}, 0, "No masks generated" def navigate_mask(direction, current_index, masks_data): """Navigate through generated masks""" masks = masks_data.get("masks", []) scores = masks_data.get("scores", []) image = masks_data.get("image", None) if not masks or len(masks) == 0: return None, current_index, "No masks available" # Calculate new index if direction == "next": new_index = (current_index + 1) % len(masks) else: # previous new_index = (current_index - 1) % len(masks) # Get the mask at new index mask = masks[new_index] score = scores[new_index] # Update global state for saving global CURRENT_MASK CURRENT_MASK = mask # Create visualization if image is not None: pil_image = fix_image_array(image) mask_visualization = create_mask_visualization(pil_image, mask, score, 0.0) else: mask_visualization = None mask_info_text = f"Mask {new_index + 1} of {len(masks)} (Score: {score:.3f})" return mask_visualization, new_index, mask_info_text def save_and_download_mask(custom_folder_name, download_format): """Save mask locally and prepare download for user.""" global CURRENT_MASK, CURRENT_IMAGE_NAME, CURRENT_POINTS if CURRENT_MASK is None: return "❌ No mask to save. Generate a mask first.", None if CURRENT_POINTS is None: return "❌ No points available. Generate a mask first.", None try: # Save locally (keep existing hierarchy) local_save_status = save_binary_mask( CURRENT_MASK, CURRENT_IMAGE_NAME, CURRENT_POINTS, 0.0, 0, False, custom_folder_name=(custom_folder_name or None) ) # Create download file timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") base_name = os.path.splitext(os.path.basename(CURRENT_IMAGE_NAME or "mask"))[0] if download_format == "PNG": # Create PNG for download binary_mask = (CURRENT_MASK > 0).astype(np.uint8) * 255 mask_image = Image.fromarray(binary_mask, mode='L') download_path = f"/tmp/mask_{base_name}_{timestamp}.png" mask_image.save(download_path, format="PNG") elif download_format == "JPG": # Create JPG for download binary_mask = (CURRENT_MASK > 0).astype(np.uint8) * 255 mask_image = Image.fromarray(binary_mask, mode='L') download_path = f"/tmp/mask_{base_name}_{timestamp}.jpg" mask_image.save(download_path, format="JPEG", quality=95) elif download_format == "PT": # Create PyTorch tensor for download download_path = f"/tmp/mask_{base_name}_{timestamp}.pt" torch.save(torch.from_numpy((CURRENT_MASK > 0).astype(np.float32)), download_path) # Make download visible and return file download_status = f"📥 Download ready: {download_format} format" return download_status, gr.File(value=download_path, visible=True) except Exception as e: return f"❌ Save/download failed: {str(e)}", None # Wire events # Let the annotatable image also handle image uploads (drag & drop / click upload) original_with_input.upload( on_image_upload, inputs=[original_with_input], outputs=[original_with_input, points_overlay, points_state, points_display, status_text] ) original_with_input.select( on_image_click, inputs=[original_with_input, points_state, negative_point_mode], outputs=[points_state, points_display, points_overlay, status_text] ) # Generate button and Enter key support generate_btn.click( generate_segmentation, inputs=[original_with_input, points_state, text_prompt_input, num_masks], outputs=[mask_result, status_text, masks_data, current_mask_index, mask_info] ) # Enter key support for text prompt text_prompt_input.submit( generate_segmentation, inputs=[original_with_input, points_state, text_prompt_input, num_masks], outputs=[mask_result, status_text, masks_data, current_mask_index, mask_info] ) # Mask navigation prev_mask_btn.click( lambda idx, data: navigate_mask("prev", idx, data), inputs=[current_mask_index, masks_data], outputs=[mask_result, current_mask_index, mask_info] ) next_mask_btn.click( lambda idx, data: navigate_mask("next", idx, data), inputs=[current_mask_index, masks_data], outputs=[mask_result, current_mask_index, mask_info] ) clear_points_btn.click( clear_all_points, inputs=[original_with_input], outputs=[points_state, points_display, points_overlay, original_with_input, mask_result, status_text] ) clear_text_btn.click( clear_text_prompt, outputs=[text_prompt_input, status_text] ) save_btn.click( save_and_download_mask, inputs=[mask_name_input, format_selector], outputs=[status_text, download_file] ) return interface def main(): """Main function""" print("🚀 Starting Fixed SAM 2.1 Interface...") interface = create_interface() print("🌐 Launching web interface...") print("📍 Click on objects in images to segment them!") interface.launch( server_port=int(os.environ.get("GRADIO_SERVER_PORT", 7860)), share=True, # Enable public sharing inbrowser=False, # Don't auto-open browser in server environment show_error=True, server_name="0.0.0.0", # Allow external connections auth=None # No authentication for public access ) if __name__ == "__main__": main()