Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from einops.einops import rearrange | |
| INF = 1e9 | |
| def mask_border(m, b: int, v): | |
| """ Mask borders with value | |
| Args: | |
| m (torch.Tensor): [N, H0, W0, H1, W1] | |
| b (int) | |
| v (m.dtype) | |
| """ | |
| if b <= 0: | |
| return | |
| m[:, :b] = v | |
| m[:, :, :b] = v | |
| m[:, :, :, :b] = v | |
| m[:, :, :, :, :b] = v | |
| m[:, -b:] = v | |
| m[:, :, -b:] = v | |
| m[:, :, :, -b:] = v | |
| m[:, :, :, :, -b:] = v | |
| def mask_border_with_padding(m, bd, v, p_m0, p_m1): | |
| if bd <= 0: | |
| return | |
| m[:, :bd] = v | |
| m[:, :, :bd] = v | |
| m[:, :, :, :bd] = v | |
| m[:, :, :, :, :bd] = v | |
| h0s, w0s = p_m0.sum(1).max(-1)[0].int(), p_m0.sum(-1).max(-1)[0].int() | |
| h1s, w1s = p_m1.sum(1).max(-1)[0].int(), p_m1.sum(-1).max(-1)[0].int() | |
| for b_idx, (h0, w0, h1, w1) in enumerate(zip(h0s, w0s, h1s, w1s)): | |
| m[b_idx, h0 - bd:] = v | |
| m[b_idx, :, w0 - bd:] = v | |
| m[b_idx, :, :, h1 - bd:] = v | |
| m[b_idx, :, :, :, w1 - bd:] = v | |
| def compute_max_candidates(p_m0, p_m1): | |
| """Compute the max candidates of all pairs within a batch | |
| Args: | |
| p_m0, p_m1 (torch.Tensor): padded masks | |
| """ | |
| h0s, w0s = p_m0.sum(1).max(-1)[0], p_m0.sum(-1).max(-1)[0] | |
| h1s, w1s = p_m1.sum(1).max(-1)[0], p_m1.sum(-1).max(-1)[0] | |
| max_cand = torch.sum( | |
| torch.min(torch.stack([h0s * w0s, h1s * w1s], -1), -1)[0]) | |
| return max_cand | |
| class CoarseMatching(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| # general config | |
| self.thr = config['thr'] | |
| self.border_rm = config['border_rm'] | |
| # -- # for trainig fine-level LoFTR | |
| self.train_coarse_percent = config['train_coarse_percent'] | |
| self.train_pad_num_gt_min = config['train_pad_num_gt_min'] | |
| # we provide 2 options for differentiable matching | |
| self.match_type = config['match_type'] | |
| if self.match_type == 'dual_softmax': | |
| self.temperature = config['dsmax_temperature'] | |
| elif self.match_type == 'sinkhorn': | |
| try: | |
| from .superglue import log_optimal_transport | |
| except ImportError: | |
| raise ImportError("download superglue.py first!") | |
| self.log_optimal_transport = log_optimal_transport | |
| self.bin_score = nn.Parameter( | |
| torch.tensor(config['skh_init_bin_score'], requires_grad=True)) | |
| self.skh_iters = config['skh_iters'] | |
| self.skh_prefilter = config['skh_prefilter'] | |
| else: | |
| raise NotImplementedError() | |
| def forward(self, feat_c0, feat_c1, data, mask_c0=None, mask_c1=None): | |
| """ | |
| Args: | |
| feat0 (torch.Tensor): [N, L, C] | |
| feat1 (torch.Tensor): [N, S, C] | |
| data (dict) | |
| mask_c0 (torch.Tensor): [N, L] (optional) | |
| mask_c1 (torch.Tensor): [N, S] (optional) | |
| Update: | |
| data (dict): { | |
| 'b_ids' (torch.Tensor): [M'], | |
| 'i_ids' (torch.Tensor): [M'], | |
| 'j_ids' (torch.Tensor): [M'], | |
| 'gt_mask' (torch.Tensor): [M'], | |
| 'mkpts0_c' (torch.Tensor): [M, 2], | |
| 'mkpts1_c' (torch.Tensor): [M, 2], | |
| 'mconf' (torch.Tensor): [M]} | |
| NOTE: M' != M during training. | |
| """ | |
| N, L, S, C = feat_c0.size(0), feat_c0.size(1), feat_c1.size(1), feat_c0.size(2) | |
| # normalize | |
| feat_c0, feat_c1 = map(lambda feat: feat / feat.shape[-1]**.5, | |
| [feat_c0, feat_c1]) | |
| if self.match_type == 'dual_softmax': | |
| sim_matrix = torch.einsum("nlc,nsc->nls", feat_c0, | |
| feat_c1) / self.temperature | |
| if mask_c0 is not None: | |
| sim_matrix.masked_fill_( | |
| ~(mask_c0[..., None] * mask_c1[:, None]).bool(), | |
| -INF) | |
| conf_matrix = F.softmax(sim_matrix, 1) * F.softmax(sim_matrix, 2) | |
| elif self.match_type == 'sinkhorn': | |
| # sinkhorn, dustbin included | |
| sim_matrix = torch.einsum("nlc,nsc->nls", feat_c0, feat_c1) | |
| if mask_c0 is not None: | |
| sim_matrix[:, :L, :S].masked_fill_( | |
| ~(mask_c0[..., None] * mask_c1[:, None]).bool(), | |
| -INF) | |
| # build uniform prior & use sinkhorn | |
| log_assign_matrix = self.log_optimal_transport( | |
| sim_matrix, self.bin_score, self.skh_iters) | |
| assign_matrix = log_assign_matrix.exp() | |
| conf_matrix = assign_matrix[:, :-1, :-1] | |
| # filter prediction with dustbin score (only in evaluation mode) | |
| if not self.training and self.skh_prefilter: | |
| filter0 = (assign_matrix.max(dim=2)[1] == S)[:, :-1] # [N, L] | |
| filter1 = (assign_matrix.max(dim=1)[1] == L)[:, :-1] # [N, S] | |
| conf_matrix[filter0[..., None].repeat(1, 1, S)] = 0 | |
| conf_matrix[filter1[:, None].repeat(1, L, 1)] = 0 | |
| if self.config['sparse_spvs']: | |
| data.update({'conf_matrix_with_bin': assign_matrix.clone()}) | |
| data.update({'conf_matrix': conf_matrix}) | |
| # predict coarse matches from conf_matrix | |
| data.update(**self.get_coarse_match(conf_matrix, data)) | |
| def get_coarse_match(self, conf_matrix, data): | |
| """ | |
| Args: | |
| conf_matrix (torch.Tensor): [N, L, S] | |
| data (dict): with keys ['hw0_i', 'hw1_i', 'hw0_c', 'hw1_c'] | |
| Returns: | |
| coarse_matches (dict): { | |
| 'b_ids' (torch.Tensor): [M'], | |
| 'i_ids' (torch.Tensor): [M'], | |
| 'j_ids' (torch.Tensor): [M'], | |
| 'gt_mask' (torch.Tensor): [M'], | |
| 'm_bids' (torch.Tensor): [M], | |
| 'mkpts0_c' (torch.Tensor): [M, 2], | |
| 'mkpts1_c' (torch.Tensor): [M, 2], | |
| 'mconf' (torch.Tensor): [M]} | |
| """ | |
| axes_lengths = { | |
| 'h0c': data['hw0_c'][0], | |
| 'w0c': data['hw0_c'][1], | |
| 'h1c': data['hw1_c'][0], | |
| 'w1c': data['hw1_c'][1] | |
| } | |
| _device = conf_matrix.device | |
| # 1. confidence thresholding | |
| mask = conf_matrix > self.thr | |
| mask = rearrange(mask, 'b (h0c w0c) (h1c w1c) -> b h0c w0c h1c w1c', | |
| **axes_lengths) | |
| if 'mask0' not in data: | |
| mask_border(mask, self.border_rm, False) | |
| else: | |
| mask_border_with_padding(mask, self.border_rm, False, | |
| data['mask0'], data['mask1']) | |
| mask = rearrange(mask, 'b h0c w0c h1c w1c -> b (h0c w0c) (h1c w1c)', | |
| **axes_lengths) | |
| # 2. mutual nearest | |
| mask = mask \ | |
| * (conf_matrix == conf_matrix.max(dim=2, keepdim=True)[0]) \ | |
| * (conf_matrix == conf_matrix.max(dim=1, keepdim=True)[0]) | |
| # 3. find all valid coarse matches | |
| # this only works when at most one `True` in each row | |
| mask_v, all_j_ids = mask.max(dim=2) | |
| b_ids, i_ids = torch.where(mask_v) | |
| j_ids = all_j_ids[b_ids, i_ids] | |
| mconf = conf_matrix[b_ids, i_ids, j_ids] | |
| # 4. Random sampling of training samples for fine-level LoFTR | |
| # (optional) pad samples with gt coarse-level matches | |
| if self.training: | |
| # NOTE: | |
| # The sampling is performed across all pairs in a batch without manually balancing | |
| # #samples for fine-level increases w.r.t. batch_size | |
| if 'mask0' not in data: | |
| num_candidates_max = mask.size(0) * max( | |
| mask.size(1), mask.size(2)) | |
| else: | |
| num_candidates_max = compute_max_candidates( | |
| data['mask0'], data['mask1']) | |
| num_matches_train = int(num_candidates_max * | |
| self.train_coarse_percent) | |
| num_matches_pred = len(b_ids) | |
| assert self.train_pad_num_gt_min < num_matches_train, "min-num-gt-pad should be less than num-train-matches" | |
| # pred_indices is to select from prediction | |
| if num_matches_pred <= num_matches_train - self.train_pad_num_gt_min: | |
| pred_indices = torch.arange(num_matches_pred, device=_device) | |
| else: | |
| pred_indices = torch.randint( | |
| num_matches_pred, | |
| (num_matches_train - self.train_pad_num_gt_min, ), | |
| device=_device) | |
| # gt_pad_indices is to select from gt padding. e.g. max(3787-4800, 200) | |
| gt_pad_indices = torch.randint( | |
| len(data['spv_b_ids']), | |
| (max(num_matches_train - num_matches_pred, | |
| self.train_pad_num_gt_min), ), | |
| device=_device) | |
| mconf_gt = torch.zeros(len(data['spv_b_ids']), device=_device) # set conf of gt paddings to all zero | |
| b_ids, i_ids, j_ids, mconf = map( | |
| lambda x, y: torch.cat([x[pred_indices], y[gt_pad_indices]], | |
| dim=0), | |
| *zip([b_ids, data['spv_b_ids']], [i_ids, data['spv_i_ids']], | |
| [j_ids, data['spv_j_ids']], [mconf, mconf_gt])) | |
| # These matches select patches that feed into fine-level network | |
| coarse_matches = {'b_ids': b_ids, 'i_ids': i_ids, 'j_ids': j_ids} | |
| # 4. Update with matches in original image resolution | |
| scale = data['hw0_i'][0] / data['hw0_c'][0] | |
| scale0 = scale * data['scale0'][b_ids] if 'scale0' in data else scale | |
| scale1 = scale * data['scale1'][b_ids] if 'scale1' in data else scale | |
| mkpts0_c = torch.stack( | |
| [i_ids % data['hw0_c'][1], i_ids // data['hw0_c'][1]], | |
| dim=1) * scale0 | |
| mkpts1_c = torch.stack( | |
| [j_ids % data['hw1_c'][1], j_ids // data['hw1_c'][1]], | |
| dim=1) * scale1 | |
| # These matches is the current prediction (for visualization) | |
| coarse_matches.update({ | |
| 'gt_mask': mconf == 0, | |
| 'm_bids': b_ids[mconf != 0], # mconf == 0 => gt matches | |
| 'mkpts0_c': mkpts0_c[mconf != 0], | |
| 'mkpts1_c': mkpts1_c[mconf != 0], | |
| 'mconf': mconf[mconf != 0] | |
| }) | |
| return coarse_matches | |