Spaces:
Runtime error
Runtime error
update
Browse files- app.py +69 -4
- requirements.txt +7 -0
- scorer.py +402 -0
app.py
CHANGED
@@ -1,7 +1,72 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
from scorer import DSGPromptProcessor
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import networkx as nx
|
6 |
+
from PIL import Image
|
7 |
|
|
|
|
|
8 |
|
9 |
+
def draw_colored_graph(dependencies, questions, answers):
|
10 |
+
# Create a directed graph
|
11 |
+
G = nx.DiGraph()
|
12 |
+
|
13 |
+
# Add nodes with labels and colors based on answers
|
14 |
+
for node, question in questions.items():
|
15 |
+
color = 'green' if answers[node] else 'red'
|
16 |
+
G.add_node(int(node), label=question, color=color)
|
17 |
+
|
18 |
+
# Add edges based on dependencies
|
19 |
+
for node, deps in dependencies.items():
|
20 |
+
for dep in deps:
|
21 |
+
G.add_edge(dep, int(node))
|
22 |
+
|
23 |
+
# Set node positions using a layout
|
24 |
+
pos = nx.spring_layout(G) # You can use other layouts like 'shell_layout' or 'circular_layout'
|
25 |
+
|
26 |
+
# Draw nodes with custom colors and labels
|
27 |
+
node_colors = [G.nodes[node]['color'] for node in G.nodes()]
|
28 |
+
nx.draw_networkx_nodes(G, pos, node_color=node_colors, node_size=2000, edgecolors='black')
|
29 |
+
|
30 |
+
# Draw edges with arrows
|
31 |
+
nx.draw_networkx_edges(G, pos, arrowstyle='-|>', arrows=True, arrowsize=20, connectionstyle='arc3,rad=0.1')
|
32 |
+
|
33 |
+
# Draw labels
|
34 |
+
labels = nx.get_node_attributes(G, 'label')
|
35 |
+
nx.draw_networkx_labels(G, pos, labels, font_size=10, font_color='black')
|
36 |
+
|
37 |
+
# Save the graph as a Pillow image
|
38 |
+
buf = io.BytesIO()
|
39 |
+
plt.axis('off')
|
40 |
+
plt.savefig(buf, format='png')
|
41 |
+
buf.seek(0)
|
42 |
+
img = Image.open(buf)
|
43 |
+
return img
|
44 |
+
|
45 |
+
dsg_scorer = DSGPromptProcessor("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
46 |
+
|
47 |
+
def process_image(image, prompt):
|
48 |
+
tuples, _ = processor.generate_tuples(prompt)
|
49 |
+
dependencies, _ = processor.generate_dependencies(tuples)
|
50 |
+
questions, _ = processor.generate_questions(
|
51 |
+
input_text, tuples.tuples, dependencies
|
52 |
+
)
|
53 |
+
reward = processor.get_reward(input_text, questions, dependencies, [image])
|
54 |
+
reward = reward[0]
|
55 |
+
answers = {i: v > 0.5 for i, v in enumerate(reward)}
|
56 |
+
graph_img = draw_colored_graph(dependencies, questions, answers)
|
57 |
+
return reward, f"""
|
58 |
+
Question: {questions}.
|
59 |
+
Reward per question: {reward}"""
|
60 |
+
|
61 |
+
# Define the Gradio interface
|
62 |
+
interface = gr.Interface(
|
63 |
+
fn=process_image,
|
64 |
+
inputs=[gr.Image(type="pil"), gr.Textbox(label="Enter your prompt")],
|
65 |
+
outputs=[gr.Image(type="pil"), gr.Textbox(label="Output text")],
|
66 |
+
title="Image and Prompt Interface",
|
67 |
+
description="Upload an image and enter a prompt. The output is an image and text below it."
|
68 |
+
)
|
69 |
+
|
70 |
+
# Launch the Gradio app
|
71 |
+
interface.launch()
|
72 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai
|
2 |
+
pydantic
|
3 |
+
transformers
|
4 |
+
torch
|
5 |
+
pillow
|
6 |
+
timm
|
7 |
+
einops
|
scorer.py
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openai
|
2 |
+
import json
|
3 |
+
from pydantic import BaseModel, Field
|
4 |
+
from PIL import Image
|
5 |
+
from tqdm import tqdm
|
6 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
7 |
+
import torch
|
8 |
+
import requests
|
9 |
+
import spaces
|
10 |
+
|
11 |
+
class PromptTuple(BaseModel):
|
12 |
+
class Tuple(BaseModel):
|
13 |
+
type: str = Field(
|
14 |
+
description="The type of the tuple. One of entity, attribute, relation",
|
15 |
+
example="attribute",
|
16 |
+
)
|
17 |
+
type_detail: str = Field(
|
18 |
+
description="""The detail of the type. For example:
|
19 |
+
- Entity: whole (entire entity, e.g., chair), part (part of entity, e.g., back of chair).
|
20 |
+
- Attribute: color (e.g., red book), type (e.g., aviator goggles), material (e.g., wooden chair), count (e.g., 5 geese), texture (e.g., rough surface), text rendering (e.g., letters “Macaroni”), shape (e.g., triangle block), size (e.g., large fence).
|
21 |
+
- Relation: spatial (e.g., A next to B); action (A kicks B).""",
|
22 |
+
example="color",
|
23 |
+
)
|
24 |
+
semantics: list = Field(
|
25 |
+
description="List of strings that explain the existence of type and type_detail in the tuple",
|
26 |
+
example=["motorcycle", "blue"],
|
27 |
+
)
|
28 |
+
|
29 |
+
tuples: list[Tuple] = Field(
|
30 |
+
description="List of tuples. Maximum 8 tuples.",
|
31 |
+
example=[
|
32 |
+
{
|
33 |
+
"type": "attribute",
|
34 |
+
"type_detail": "color",
|
35 |
+
"semantics": ["motorcycle", "blue"],
|
36 |
+
}
|
37 |
+
],
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
class DSGPromptProcessor:
|
42 |
+
def __init__(self, model_name="gpt-4o-mini"):
|
43 |
+
self.client = openai.OpenAI()
|
44 |
+
self.model_name = model_name
|
45 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
46 |
+
self.binary_vqa = AutoModelForCausalLM.from_pretrained("toilaluan/Florence-2-base-Yes-No-VQA", trust_remote_code=True).to(self.device, torch.float16)
|
47 |
+
self.binary_vqa_processor = processor = AutoProcessor.from_pretrained("toilaluan/Florence-2-base-Yes-No-VQA", trust_remote_code=True)
|
48 |
+
|
49 |
+
|
50 |
+
def generate_tuples(self, input_text: str) -> PromptTuple:
|
51 |
+
system_message = """
|
52 |
+
Given an image caption, extract the relevant entities, attributes, and relations present in the caption, and structure them into JSON format according to the following schema:
|
53 |
+
Each tuple contains the following information:
|
54 |
+
- Id: A unique identifier for the tuple.
|
55 |
+
- Type: The category of the tuple. Choose from "entity," "attribute," or "relation."
|
56 |
+
- Type Detail: Provide additional details based on the selected type:
|
57 |
+
- Entity: Specify whether it refers to the whole entity (e.g., "chair") or a part of the entity (e.g., "back of chair").
|
58 |
+
- Attribute: Specify the attribute type, such as "color", "type", "material", "count", "style", "texture", "text rendering", "shape" or "size".
|
59 |
+
- Relation: Specify the relation type, such as "spatial" (e.g., "A next to B") or "action" (e.g., "A kicks B").
|
60 |
+
- Semantics: A list of strings that represent the words or phrases from the caption that correspond to the tuple.
|
61 |
+
Example Input: "A blue motorcycle parked next to a red car."
|
62 |
+
Example output:
|
63 |
+
{
|
64 |
+
"tuples": [
|
65 |
+
{
|
66 |
+
"type": "entity",
|
67 |
+
"type_detail": "whole",
|
68 |
+
"semantics": ["motorcycle"]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"type": "attribute",
|
72 |
+
"type_detail": "color",
|
73 |
+
"semantics": ["motorcycle", "blue"]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"type": "entity",
|
77 |
+
"type_detail": "whole",
|
78 |
+
"semantics": ["car"]
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"type": "attribute",
|
82 |
+
"type_detail": "color",
|
83 |
+
"semantics": ["car", "red"]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"type": "relation",
|
87 |
+
"type_detail": "spatial",
|
88 |
+
"semantics": ["motorcycle", "next to", "car"]
|
89 |
+
}
|
90 |
+
]
|
91 |
+
}
|
92 |
+
The final JSON should contain a list of tuples, each describing a unique entity, attribute, or relation from the image caption. Each JSON should contain a maximum of 8 tuples.
|
93 |
+
"""
|
94 |
+
messages = [
|
95 |
+
{
|
96 |
+
"role": "system",
|
97 |
+
"content": system_message,
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"role": "user",
|
101 |
+
"content": input_text,
|
102 |
+
},
|
103 |
+
]
|
104 |
+
|
105 |
+
response = self.client.chat.completions.create(
|
106 |
+
model=self.model_name,
|
107 |
+
messages=messages,
|
108 |
+
response_format={"type": "json_object"},
|
109 |
+
max_tokens=512,
|
110 |
+
)
|
111 |
+
output = json.loads(response.choices[0].message.content)
|
112 |
+
return PromptTuple(**output), response.usage.total_tokens
|
113 |
+
|
114 |
+
def generate_dependencies(self, tuples: PromptTuple) -> dict:
|
115 |
+
DEPENDENCY_PROMPT = """
|
116 |
+
Given the following tuples extracted from an image caption, determine the dependencies between the entities, attributes, and relations in the JSON format.
|
117 |
+
Each tuple contains the following information:
|
118 |
+
- Id: A unique identifier for the tuple.
|
119 |
+
- Type: The category of the tuple. Choose from "entity," "attribute," or "relation."
|
120 |
+
- Type Detail: Provide additional details based on the selected type:
|
121 |
+
- Entity: Specify whether it refers to the whole entity (e.g., "chair") or a part of the entity (e.g., "back of chair").
|
122 |
+
- Attribute: Specify the attribute type, such as "color," "type," "material," "count," "texture," "text rendering," "shape," or "size."
|
123 |
+
- Relation: Specify the relation type, such as "spatial" (e.g., "A next to B") or "action" (e.g., "A kicks B").
|
124 |
+
- Semantics: A list of strings that represent the words or phrases from the caption that correspond to the tuple.
|
125 |
+
Output is a dictionary where the key is the id of the tuple and the value is a list of ids that the tuple depends on.
|
126 |
+
Example input:
|
127 |
+
[
|
128 |
+
{
|
129 |
+
"id": 1,
|
130 |
+
"type": "entity",
|
131 |
+
"type_detail": "whole",
|
132 |
+
"semantics": ["motorcycle"]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"id": 2,
|
136 |
+
"type": "attribute",
|
137 |
+
"type_detail": "color",
|
138 |
+
"semantics": ["motorcycle", "blue"]
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"id": 3,
|
142 |
+
"type": "entity",
|
143 |
+
"type_detail": "whole",
|
144 |
+
"semantics": ["car"]
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"id": 4,
|
148 |
+
"type": "attribute",
|
149 |
+
"type_detail": "color",
|
150 |
+
"semantics": ["car", "red"]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"id": 5,
|
154 |
+
"type": "relation",
|
155 |
+
"type_detail": "spatial",
|
156 |
+
"semantics": ["motorcycle", "next to", "car"]
|
157 |
+
}
|
158 |
+
]
|
159 |
+
|
160 |
+
Example output:
|
161 |
+
{
|
162 |
+
"1": [],
|
163 |
+
"2": [1],
|
164 |
+
"3": [],
|
165 |
+
"4": [3],
|
166 |
+
"5": [1, 3]
|
167 |
+
}
|
168 |
+
|
169 |
+
"""
|
170 |
+
input_obj = [{"id": i, **t.dict()} for i, t in enumerate(tuples.tuples)]
|
171 |
+
|
172 |
+
messages = [
|
173 |
+
{
|
174 |
+
"role": "system",
|
175 |
+
"content": DEPENDENCY_PROMPT,
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"role": "user",
|
179 |
+
"content": json.dumps(input_obj),
|
180 |
+
},
|
181 |
+
]
|
182 |
+
|
183 |
+
response = self.client.chat.completions.create(
|
184 |
+
model=self.model_name,
|
185 |
+
messages=messages,
|
186 |
+
response_format={"type": "json_object"},
|
187 |
+
)
|
188 |
+
return (
|
189 |
+
json.loads(response.choices[0].message.content),
|
190 |
+
response.usage.total_tokens,
|
191 |
+
)
|
192 |
+
|
193 |
+
def generate_questions(
|
194 |
+
self, prompt: str, tuples: list[dict], dependencies: dict
|
195 |
+
) -> list[str]:
|
196 |
+
"""Generate validate question based on tuples and dependencies.
|
197 |
+
|
198 |
+
Args:
|
199 |
+
prompt (str): a prompt describe the image
|
200 |
+
tuples (list[dict]): each tuple is a unit of information extracted from the prompt
|
201 |
+
dependencies (dict): the dependencies between tuples
|
202 |
+
"""
|
203 |
+
system_message = """
|
204 |
+
Task: Given a prompt that describe the image and a list of tuples extracted from the prompt. Generate questions based on tuple in natural language as a list.
|
205 |
+
Each tuple contains the following information:
|
206 |
+
- Id: A unique identifier for the tuple.
|
207 |
+
- Type: The category of the tuple. Choose from "entity," "attribute," or "relation."
|
208 |
+
- Type Detail: Provide additional details based on the selected type:
|
209 |
+
- Entity: Specify whether it refers to the whole entity (e.g., "chair") or a part of the entity (e.g., "back of chair").
|
210 |
+
- Attribute: Specify the attribute type, such as "color", "type", "material", "count", "style", "texture", "text rendering", "shape" or "size".
|
211 |
+
- Relation: Specify the relation type, such as "spatial" (e.g., "A next to B") or "action" (e.g., "A kicks B").
|
212 |
+
- Semantics: A list of strings that represent the words or phrases from the caption that correspond to the tuple.
|
213 |
+
Output is a list of questions, each question corresponds to a tuple. The number of questions must be the same as the number of tuples.
|
214 |
+
Example input:
|
215 |
+
Prompt: "A traffic light and a signpost at a crossroads intersection near a waterway"
|
216 |
+
Tuples:
|
217 |
+
[
|
218 |
+
{
|
219 |
+
"id": 1,
|
220 |
+
"type": "entity",
|
221 |
+
"type_detail": "whole",
|
222 |
+
"semantics": ["traffic light"]
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"id": 2,
|
226 |
+
"type": "entity",
|
227 |
+
"type_detail": "whole",
|
228 |
+
"semantics": ["signpost"]
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"id": 3,
|
232 |
+
"type": "relation",
|
233 |
+
"type_detail": "spatial",
|
234 |
+
"semantics": ["traffic light", "at", "crossroads intersection"]
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"id": 4,
|
238 |
+
"type": "relation",
|
239 |
+
"type_detail": "spatial",
|
240 |
+
"semantics": ["crossroads intersection", "near", "waterway"]
|
241 |
+
}
|
242 |
+
]
|
243 |
+
Dependencies:
|
244 |
+
{
|
245 |
+
"1": [],
|
246 |
+
"2": [],
|
247 |
+
"3": [1, 2],
|
248 |
+
"4": [3]
|
249 |
+
}
|
250 |
+
Example output is a json object. Each question ask about the existence of the tuple in the prompt and the answer should always be yes.
|
251 |
+
{
|
252 |
+
"1": "Is there a light?",
|
253 |
+
"2": "Is there a signpost?",
|
254 |
+
"3": "Is the traffic light at a crossroads intersection?",
|
255 |
+
"4": "Is the crossroads intersection near a waterway?"
|
256 |
+
}
|
257 |
+
"""
|
258 |
+
|
259 |
+
user_str = f"""
|
260 |
+
Prompt: {prompt}
|
261 |
+
Tuples: {tuples}
|
262 |
+
Dependencies: {dependencies}
|
263 |
+
"""
|
264 |
+
messages = [
|
265 |
+
{
|
266 |
+
"role": "system",
|
267 |
+
"content": system_message,
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"role": "user",
|
271 |
+
"content": user_str,
|
272 |
+
},
|
273 |
+
]
|
274 |
+
|
275 |
+
response = self.client.chat.completions.create(
|
276 |
+
model=self.model_name,
|
277 |
+
messages=messages,
|
278 |
+
response_format={"type": "json_object"},
|
279 |
+
)
|
280 |
+
return (
|
281 |
+
json.loads(response.choices[0].message.content),
|
282 |
+
response.usage.total_tokens,
|
283 |
+
)
|
284 |
+
|
285 |
+
def find_layers(self, dep_dict):
|
286 |
+
layers = []
|
287 |
+
remaining_keys = set(dep_dict.keys())
|
288 |
+
|
289 |
+
while remaining_keys:
|
290 |
+
current_layer = []
|
291 |
+
for key in list(remaining_keys):
|
292 |
+
# If all dependencies of the key are in previous layers
|
293 |
+
if all(
|
294 |
+
str(dep) in [k for layer in layers for k in layer]
|
295 |
+
for dep in dep_dict[key]
|
296 |
+
):
|
297 |
+
current_layer.append(key)
|
298 |
+
|
299 |
+
# If no new layer is formed, break to avoid infinite loop
|
300 |
+
if not current_layer:
|
301 |
+
break
|
302 |
+
|
303 |
+
# Add the current layer to the list of layers
|
304 |
+
layers.append(current_layer)
|
305 |
+
# Remove the keys that are now layered
|
306 |
+
remaining_keys -= set(current_layer)
|
307 |
+
|
308 |
+
if len(layers) == 3:
|
309 |
+
break
|
310 |
+
|
311 |
+
ordered_indexes = [item for sublist in layers for item in sublist]
|
312 |
+
return ordered_indexes
|
313 |
+
|
314 |
+
def _create_graph_questions(self, questions: dict, dependencies: dict) -> set:
|
315 |
+
# create a question graph
|
316 |
+
layered_indexes = self.find_layers(dependencies)
|
317 |
+
print(layered_indexes)
|
318 |
+
sorted_questions = [questions[i] for i in layered_indexes]
|
319 |
+
|
320 |
+
return sorted_questions
|
321 |
+
|
322 |
+
@spaces.GPU(duration=120)
|
323 |
+
def get_reward(
|
324 |
+
self,
|
325 |
+
prompt: str,
|
326 |
+
questions: list[str],
|
327 |
+
dependencies: dict[list],
|
328 |
+
images: list[str],
|
329 |
+
mode="hybrid",
|
330 |
+
):
|
331 |
+
"""Get reward for the generated questions use structured question graph.
|
332 |
+
|
333 |
+
Args:
|
334 |
+
prompt (str): a prompt describe the image
|
335 |
+
questions (list[str]): a list of questions generated based on the tuples
|
336 |
+
dependencies (dict[list]): the dependencies between tuples
|
337 |
+
images (list[str]): a list of image urls
|
338 |
+
"""
|
339 |
+
scores = {}
|
340 |
+
|
341 |
+
sorted_questions = self._create_graph_questions(questions, dependencies)
|
342 |
+
print(sorted_questions)
|
343 |
+
|
344 |
+
for i in range(len(images)):
|
345 |
+
scores[i] = [0] * len(sorted_questions)
|
346 |
+
|
347 |
+
def get_reward_for_a_question(
|
348 |
+
question: str,
|
349 |
+
question_dependencies: list[int],
|
350 |
+
image: Image.Image,
|
351 |
+
prev_scores: list[int],
|
352 |
+
) -> float:
|
353 |
+
if any([not (prev_scores[i] > 0.5) for i in question_dependencies]):
|
354 |
+
print(
|
355 |
+
f"Skipping question: {question}. It depends on {[sorted_questions[i] for i in range(len(question_dependencies))]} that was answered as No."
|
356 |
+
)
|
357 |
+
return 0
|
358 |
+
if not isinstance(image, Image.Image):
|
359 |
+
raise ValueError("Invalid image type")
|
360 |
+
|
361 |
+
inputs = self.binary_vqa_processor(text=question, images=image, return_tensors="pt").to(self.device, torch.float16)
|
362 |
+
decoder_input_ids = torch.LongTensor([[self.binary_vqa.language_model.config.pad_token_id, self.binary_vqa.language_model.config.decoder_start_token_id]]).to(self.device)
|
363 |
+
outputs = self.binary_vqa(
|
364 |
+
input_ids=inputs["input_ids"],
|
365 |
+
pixel_values=inputs["pixel_values"],
|
366 |
+
decoder_input_ids=decoder_input_ids
|
367 |
+
)
|
368 |
+
logits = outputs.logits[:, -1]
|
369 |
+
score = logits[0].sigmoid().item()
|
370 |
+
print(f"The answer Yes has {score} probs")
|
371 |
+
return score
|
372 |
+
|
373 |
+
pbar = tqdm(
|
374 |
+
total=len(sorted_questions) * len(images),
|
375 |
+
desc=f"Calculating reward over {len(images)} images and {len(sorted_questions)} questions",
|
376 |
+
)
|
377 |
+
for i, question in enumerate(sorted_questions):
|
378 |
+
for j, image in enumerate(images):
|
379 |
+
scores[j][i] = get_reward_for_a_question(
|
380 |
+
question, dependencies[str(i)], image, scores[j]
|
381 |
+
)
|
382 |
+
pbar.update(1)
|
383 |
+
|
384 |
+
return scores
|
385 |
+
|
386 |
+
|
387 |
+
if __name__ == "__main__":
|
388 |
+
processor = DSGPromptProcessor(model_name="mistralai/Mixtral-8x7B-Instruct-v0.1")
|
389 |
+
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
390 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
391 |
+
input_text = "ghibli style image of a cat"
|
392 |
+
tuples, tokens = processor.generate_tuples(input_text)
|
393 |
+
print(tuples)
|
394 |
+
dependencies, tokens = processor.generate_dependencies(tuples)
|
395 |
+
print(dependencies)
|
396 |
+
questions, tokens = processor.generate_questions(
|
397 |
+
input_text, tuples.tuples, dependencies
|
398 |
+
)
|
399 |
+
print(questions)
|
400 |
+
|
401 |
+
reward = processor.get_reward(input_text, questions, dependencies, [image])
|
402 |
+
print(reward)
|