toilaluan's picture
update
7ccff21
import spaces
import pyiqa
import torch
class IQA:
def __init__(self, model_name="nima"):
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
self.model = pyiqa.create_metric(model_name, device=device)
print(self.model)
def __call__(self, image_path):
return self.model(image_path)
if __name__ == "__main__":
import requests
from PIL import Image
import glob
image_files = glob.glob("samples/*")
iqa_metric = IQA(model_name="nima-vgg16-ava")
for image_file in image_files:
print(image_file)
image = Image.open(image_file)
score = iqa_metric(image)
print(score)