Spaces:
Running
Running
File size: 6,243 Bytes
179cf59 912e356 c49930d fa3c0c0 9b5b26a c19d193 9ffa21c 8785d98 6aae614 5bd60f9 bceedcf 8fe992b 912e356 a9af48a 912e356 a9af48a 912e356 9b5b26a 84651ad 179cf59 84651ad 179cf59 e759611 84651ad afd461f 84651ad 179cf59 84651ad 8e85db4 84651ad 8e85db4 afd461f 8c01ffb 8fe992b a9af48a fa3c0c0 8c01ffb a9af48a 8fe992b 9b5b26a 912e356 4482d39 912e356 4482d39 912e356 4482d39 912e356 a9af48a a1a9769 912e356 a1a9769 912e356 a1a9769 912e356 a1a9769 912e356 a1a9769 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import json
import gradio as gr
from smolagents import CodeAgent
import json
import random
from smolagents import TransformersModel
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
import numpy as np
from tools.final_answer import FinalAnswerTool
from tools.visit_webpage import VisitWebpageTool
from tools.web_search import DuckDuckGoSearchTool
from typing import Optional, Tuple
model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
# model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
model_id=model_id,
# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
# image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
#with open("prompts.yaml", 'r') as stream:
# prompt_templates = yaml.safe_load(stream)
#final_answer = FinalAnswerTool()
visit_webpage = VisitWebpageTool()
web_search = DuckDuckGoSearchTool()
@tool
def provide_my_information(query: str) -> str:
"""
Provide information about me (Tianqing LIU)based on the user's query.
Args:
query: The user's question or request for information.
Returns:
str: A response containing the requested information.
"""
# Convert the query to lowercase for case-insensitive matching
query = query.lower()
my_info = None
with open("info/info.json", 'r') as file:
my_info = json.load(file)
# Check for specific keywords in the query and return the corresponding information
if "who" in query or "about" in query or "introduce" in query or "presentation" in query:
return f" {my_info['introduction']}."
if "name" in query:
return f"My name is {my_info['name']}."
elif "location" in query:
return f"I am located in {my_info['location']}."
elif "occupation" in query or "job" in query or "work" in query:
return f"I work as a {my_info['occupation']}."
elif "education" in query or "educational" in query:
return f"I have a {my_info['education']}."
elif "skills" in query or "what can you do" in query:
return f"My skills include: {', '.join(my_info['skills'])}."
elif "hobbies" in query or "interests" in query:
return f"My hobbies are: {', '.join(my_info['hobbies'])}."
elif "contact" in query or "email" in query or "linkedin" in query or "github" in query or "cv" in query or "resume" in query:
contact_info = my_info["contact"]
return (
f"You can contact me via email at {contact_info['email']}, "
f"connect with me on LinkedIn at {contact_info['linkedin']}, "
f"or check out my GitHub profile at {contact_info['github']}."
f"or check out my website at {contact_info['website']}."
)
else:
return "I'm sorry, I don't have information on that. Please ask about my name, location, occupation, education, skills, hobbies, or contact details."
agent = CodeAgent(
model=model,
tools=[provide_my_information], ## add your tools here (don't remove final answer)
max_steps=1,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None
#prompt_templates=prompt_templates
)
def chatbot_response_json(user_input):
my_info = None
user_input = user_input.lower()
with open("info/info.json", 'r') as file:
my_info = json.load(file)
if "who" in user_input or "about" in user_input or "introduce" in user_input or "presentation" in user_input:
return f" {my_info['introduction']}."
elif "name" in user_input:
return f"My name is {my_info['name']}."
elif "hello" in user_input:
return f"Hello! I'm here to assist you. Feel free to ask me about my background, experience, education, or anything else you'd like to know!"
elif "bye" in user_input or "bye" in user_input:
return f"Bye."
elif "location" in user_input:
return f"I am located in {my_info['location']}."
elif "phone" in user_input or "number" in user_input:
return f"you can send me a message directly here. ex: send message : your message"
elif "experiences" in user_input or "career" in user_input or "experience" in user_input:
return f"{my_info['career']}."
elif "occupation" in user_input or "job" in user_input or "work" in user_input:
return f"I work as a {my_info['occupation']}."
elif "education" in user_input or "educational" in user_input:
return f"I have a {my_info['education']}."
elif "skills" in user_input or "what can you do" in user_input:
return f"My skills include: {', '.join(my_info['skills'])}."
elif "hobbies" in user_input or "interests" in user_input:
return f"My hobbies are: {', '.join(my_info['hobbies'])}."
elif "cv" in user_input or "resume" in user_input:
return f"My cvs are: {', '.join(my_info['cv'])}."
elif "contact" in user_input or "email" in user_input or "e-mail" in user_input or "linkedin" in user_input or "github":
contact_info = my_info["contact"]
return (
f"You can contact me via email at {contact_info['email']}, "
f"connect with me on LinkedIn at {contact_info['linkedin']}, "
f"or check out my GitHub profile at {contact_info['github']}."
f"or check out my website at {contact_info['website']}."
)
else:
return agent.run(user_input)
def chatbot_response(user_input, history):
"""
Get a response from the chatbot
"""
request = user_input
history = history or []
response = chatbot_response_json(request) # Call the chatbot logic
#history.append((user_input, response))
yield response
# Create the Gradio interface
#demo = gr.ChatInterface(fn=chatbot_response, title="My Personal Chatbot", description="Ask me anything about myself!")
demo = gr.ChatInterface(
chatbot_response,
type="messages",
multimodal=False,
title="Ask me anything about.....",
)
demo.launch()
if __name__ == "__main__":
demo.launch()
|