|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import mimetypes |
|
import os |
|
import re |
|
import shutil |
|
from typing import Optional |
|
|
|
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types |
|
from smolagents.agents import ActionStep, MultiStepAgent |
|
from smolagents.memory import MemoryStep |
|
from smolagents.utils import _is_package_available |
|
import gradio as gr |
|
|
|
|
|
def pull_messages_from_step( |
|
step_log: MemoryStep, |
|
): |
|
"""Extract ChatMessage objects from agent steps with proper nesting""" |
|
import gradio as gr |
|
|
|
if isinstance(step_log, ActionStep): |
|
|
|
step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else "" |
|
yield gr.ChatMessage(role="assistant", content=f"**{step_number}**") |
|
|
|
|
|
if hasattr(step_log, "model_output") and step_log.model_output is not None: |
|
|
|
model_output = step_log.model_output.strip() |
|
|
|
model_output = re.sub(r"```\s*<end_code>", "```", model_output) |
|
model_output = re.sub(r"<end_code>\s*```", "```", model_output) |
|
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output) |
|
model_output = model_output.strip() |
|
yield gr.ChatMessage(role="assistant", content=model_output) |
|
|
|
|
|
if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None: |
|
first_tool_call = step_log.tool_calls[0] |
|
used_code = first_tool_call.name == "python_interpreter" |
|
parent_id = f"call_{len(step_log.tool_calls)}" |
|
|
|
|
|
|
|
args = first_tool_call.arguments |
|
if isinstance(args, dict): |
|
content = str(args.get("answer", str(args))) |
|
else: |
|
content = str(args).strip() |
|
|
|
if used_code: |
|
|
|
content = re.sub(r"```.*?\n", "", content) |
|
content = re.sub(r"\s*<end_code>\s*", "", content) |
|
content = content.strip() |
|
if not content.startswith("```python"): |
|
content = f"```python\n{content}\n```" |
|
|
|
parent_message_tool = gr.ChatMessage( |
|
role="assistant", |
|
content=content, |
|
metadata={ |
|
"title": f"🛠️ Used tool {first_tool_call.name}", |
|
"id": parent_id, |
|
"status": "pending", |
|
}, |
|
) |
|
yield parent_message_tool |
|
|
|
|
|
if hasattr(step_log, "observations") and ( |
|
step_log.observations is not None and step_log.observations.strip() |
|
): |
|
log_content = step_log.observations.strip() |
|
if log_content: |
|
log_content = re.sub(r"^Execution logs:\s*", "", log_content) |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content=f"{log_content}", |
|
metadata={"title": "📝 Execution Logs", "parent_id": parent_id, "status": "done"}, |
|
) |
|
|
|
|
|
if hasattr(step_log, "error") and step_log.error is not None: |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content=str(step_log.error), |
|
metadata={"title": "💥 Error", "parent_id": parent_id, "status": "done"}, |
|
) |
|
|
|
|
|
parent_message_tool.metadata["status"] = "done" |
|
|
|
|
|
elif hasattr(step_log, "error") and step_log.error is not None: |
|
yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "💥 Error"}) |
|
|
|
|
|
step_footnote = f"{step_number}" |
|
if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"): |
|
token_str = ( |
|
f" | Input-tokens:{step_log.input_token_count:,} | Output-tokens:{step_log.output_token_count:,}" |
|
) |
|
step_footnote += token_str |
|
if hasattr(step_log, "duration"): |
|
step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None |
|
step_footnote += step_duration |
|
step_footnote = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """ |
|
yield gr.ChatMessage(role="assistant", content=f"{step_footnote}") |
|
yield gr.ChatMessage(role="assistant", content="-----") |
|
|
|
|
|
def stream_to_gradio( |
|
agent, |
|
task: str, |
|
reset_agent_memory: bool = False, |
|
additional_args: Optional[dict] = None, |
|
): |
|
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages.""" |
|
if not _is_package_available("gradio"): |
|
raise ModuleNotFoundError( |
|
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`" |
|
) |
|
import gradio as gr |
|
|
|
total_input_tokens = 0 |
|
total_output_tokens = 0 |
|
|
|
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args): |
|
|
|
if hasattr(agent.model, "last_input_token_count"): |
|
total_input_tokens += agent.model.last_input_token_count |
|
total_output_tokens += agent.model.last_output_token_count |
|
if isinstance(step_log, ActionStep): |
|
step_log.input_token_count = agent.model.last_input_token_count |
|
step_log.output_token_count = agent.model.last_output_token_count |
|
|
|
for message in pull_messages_from_step( |
|
step_log, |
|
): |
|
yield message |
|
|
|
final_answer = step_log |
|
final_answer = handle_agent_output_types(final_answer) |
|
|
|
if isinstance(final_answer, AgentText): |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content=f"**Final answer:**\n{final_answer.to_string()}\n", |
|
) |
|
elif isinstance(final_answer, AgentImage): |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content={"path": final_answer.to_string(), "mime_type": "image/png"}, |
|
) |
|
elif isinstance(final_answer, AgentAudio): |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content={"path": final_answer.to_string(), "mime_type": "audio/wav"}, |
|
) |
|
else: |
|
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}") |
|
|
|
|
|
class GradioUI: |
|
"""A one-line interface to launch your agent in Gradio""" |
|
|
|
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None): |
|
if not _is_package_available("gradio"): |
|
raise ModuleNotFoundError( |
|
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`" |
|
) |
|
self.agent = agent |
|
self.file_upload_folder = file_upload_folder |
|
if self.file_upload_folder is not None: |
|
if not os.path.exists(file_upload_folder): |
|
os.mkdir(file_upload_folder) |
|
|
|
def interact_with_agent(self, prompt, messages): |
|
import gradio as gr |
|
messages.append(gr.ChatMessage(role="user", content=prompt)) |
|
yield messages |
|
gr.update( |
|
value="<center><h1>Thinking...</h1></center>", visible=True |
|
) |
|
for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False): |
|
messages.append(msg) |
|
yield messages |
|
yield messages |
|
|
|
|
|
|
|
def log_user_message(self, text_input, file_uploads_log): |
|
return ( |
|
text_input |
|
+ ( |
|
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}" |
|
if len(file_uploads_log) > 0 |
|
else "" |
|
), |
|
"", |
|
) |
|
|
|
|
|
|
|
def launch(self, **kwargs): |
|
import gradio as gr |
|
def append_example_message(x: gr.SelectData, messages): |
|
if x.value["text"] is not None: |
|
message = x.value["text"] |
|
if "files" in x.value: |
|
if isinstance(x.value["files"], list): |
|
message = "Here are the files: " |
|
for file in x.value["files"]: |
|
message += f"{file}, " |
|
else: |
|
message = x.value["files"] |
|
messages.append(gr.ChatMessage(role="user", content=message)) |
|
|
|
|
|
|
|
return message |
|
|
|
examples = [ |
|
{ |
|
"text": "Calculate the VaR for returns: 0.1, -0.2, 0.05, -0.15, 0.3", |
|
"display_text": "Example 1: Calculate VaR", |
|
|
|
|
|
}, |
|
{ |
|
"text": "Create a study plan for FRM Part 1.", |
|
"display_text": "Example 2: Create a study plan for FRM Part 1.", |
|
|
|
}, |
|
{ |
|
"text": "Give me a practice question on bond valuation.", |
|
"display_text": "Example 3: Give me a practice question on bond valuation.", |
|
}, |
|
] |
|
with gr.Blocks(fill_height=True) as demo: |
|
stored_messages = gr.State([]) |
|
file_uploads_log = gr.State([]) |
|
chatbot = gr.Chatbot( |
|
label="Agent", |
|
type="messages", |
|
avatar_images=( |
|
None, |
|
"https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/ArqApSFb0S5HBg574Os9G.png", |
|
), |
|
resizeable=True, |
|
scale=1, |
|
|
|
examples=examples, |
|
placeholder="""<h1>FRM Study chatbot</h1>""", |
|
|
|
) |
|
|
|
|
|
|
|
text_input = gr.Textbox(lines=1, label="Chat Message") |
|
text_input.submit( |
|
self.log_user_message, |
|
[text_input, file_uploads_log], |
|
[stored_messages, text_input], |
|
).then(self.interact_with_agent, [stored_messages, chatbot], [chatbot]) |
|
chatbot.example_select(append_example_message, chatbot, text_input) |
|
|
|
|
|
|
|
|
|
demo.launch(debug=True, share=True, **kwargs) |
|
|
|
|
|
__all__ = ["stream_to_gradio", "GradioUI"] |