|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import mimetypes
|
|
import os
|
|
import re
|
|
import shutil
|
|
from typing import Optional
|
|
|
|
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
|
|
from smolagents.agents import ActionStep, MultiStepAgent
|
|
from smolagents.memory import MemoryStep
|
|
from smolagents.utils import _is_package_available
|
|
|
|
|
|
def pull_messages_from_step(
|
|
step_log: MemoryStep,
|
|
):
|
|
"""Extract ChatMessage objects from agent steps with proper nesting"""
|
|
import gradio as gr
|
|
|
|
if isinstance(step_log, ActionStep):
|
|
|
|
step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else ""
|
|
yield gr.ChatMessage(role="assistant", content=f"**{step_number}**")
|
|
|
|
|
|
if hasattr(step_log, "model_output") and step_log.model_output is not None:
|
|
|
|
model_output = step_log.model_output.strip()
|
|
|
|
model_output = re.sub(r"```\s*<end_code>", "```", model_output)
|
|
model_output = re.sub(r"<end_code>\s*```", "```", model_output)
|
|
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output)
|
|
model_output = model_output.strip()
|
|
yield gr.ChatMessage(role="assistant", content=model_output)
|
|
|
|
|
|
if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None:
|
|
first_tool_call = step_log.tool_calls[0]
|
|
used_code = first_tool_call.name == "python_interpreter"
|
|
parent_id = f"call_{len(step_log.tool_calls)}"
|
|
|
|
|
|
|
|
args = first_tool_call.arguments
|
|
if isinstance(args, dict):
|
|
content = str(args.get("answer", str(args)))
|
|
else:
|
|
content = str(args).strip()
|
|
|
|
if used_code:
|
|
|
|
content = re.sub(r"```.*?\n", "", content)
|
|
content = re.sub(r"\s*<end_code>\s*", "", content)
|
|
content = content.strip()
|
|
if not content.startswith("```python"):
|
|
content = f"```python\n{content}\n```"
|
|
|
|
parent_message_tool = gr.ChatMessage(
|
|
role="assistant",
|
|
content=content,
|
|
metadata={
|
|
"title": f"🛠️ Used tool {first_tool_call.name}",
|
|
"id": parent_id,
|
|
"status": "pending",
|
|
},
|
|
)
|
|
yield parent_message_tool
|
|
|
|
|
|
if hasattr(step_log, "observations") and (
|
|
step_log.observations is not None and step_log.observations.strip()
|
|
):
|
|
log_content = step_log.observations.strip()
|
|
if log_content:
|
|
log_content = re.sub(r"^Execution logs:\s*", "", log_content)
|
|
yield gr.ChatMessage(
|
|
role="assistant",
|
|
content=f"{log_content}",
|
|
metadata={"title": "📝 Execution Logs", "parent_id": parent_id, "status": "done"},
|
|
)
|
|
|
|
|
|
if hasattr(step_log, "error") and step_log.error is not None:
|
|
yield gr.ChatMessage(
|
|
role="assistant",
|
|
content=str(step_log.error),
|
|
metadata={"title": "💥 Error", "parent_id": parent_id, "status": "done"},
|
|
)
|
|
|
|
|
|
parent_message_tool.metadata["status"] = "done"
|
|
|
|
|
|
elif hasattr(step_log, "error") and step_log.error is not None:
|
|
yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "💥 Error"})
|
|
|
|
|
|
step_footnote = f"{step_number}"
|
|
if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"):
|
|
token_str = (
|
|
f" | Input-tokens:{step_log.input_token_count:,} | Output-tokens:{step_log.output_token_count:,}"
|
|
)
|
|
step_footnote += token_str
|
|
if hasattr(step_log, "duration"):
|
|
step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None
|
|
step_footnote += step_duration
|
|
step_footnote = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
|
|
yield gr.ChatMessage(role="assistant", content=f"{step_footnote}")
|
|
yield gr.ChatMessage(role="assistant", content="-----")
|
|
|
|
|
|
def stream_to_gradio(
|
|
agent,
|
|
task: str,
|
|
reset_agent_memory: bool = False,
|
|
additional_args: Optional[dict] = None,
|
|
):
|
|
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
|
|
if not _is_package_available("gradio"):
|
|
raise ModuleNotFoundError(
|
|
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
|
|
)
|
|
import gradio as gr
|
|
|
|
total_input_tokens = 0
|
|
total_output_tokens = 0
|
|
|
|
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
|
|
|
|
if hasattr(agent.model, "last_input_token_count"):
|
|
total_input_tokens += agent.model.last_input_token_count
|
|
total_output_tokens += agent.model.last_output_token_count
|
|
if isinstance(step_log, ActionStep):
|
|
step_log.input_token_count = agent.model.last_input_token_count
|
|
step_log.output_token_count = agent.model.last_output_token_count
|
|
|
|
for message in pull_messages_from_step(
|
|
step_log,
|
|
):
|
|
yield message
|
|
|
|
final_answer = step_log
|
|
final_answer = handle_agent_output_types(final_answer)
|
|
|
|
if isinstance(final_answer, AgentText):
|
|
yield gr.ChatMessage(
|
|
role="assistant",
|
|
content=f"**Final answer:**\n{final_answer.to_string()}\n",
|
|
)
|
|
elif isinstance(final_answer, AgentImage):
|
|
yield gr.ChatMessage(
|
|
role="assistant",
|
|
content={"path": final_answer.to_string(), "mime_type": "image/png"},
|
|
)
|
|
elif isinstance(final_answer, AgentAudio):
|
|
yield gr.ChatMessage(
|
|
role="assistant",
|
|
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
|
|
)
|
|
else:
|
|
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")
|
|
|
|
|
|
class GradioUI:
|
|
"""A one-line interface to launch your agent in Gradio"""
|
|
|
|
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
|
|
if not _is_package_available("gradio"):
|
|
raise ModuleNotFoundError(
|
|
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
|
|
)
|
|
self.agent = agent
|
|
self.file_upload_folder = file_upload_folder
|
|
if self.file_upload_folder is not None:
|
|
if not os.path.exists(file_upload_folder):
|
|
os.mkdir(file_upload_folder)
|
|
|
|
def interact_with_agent(self, prompt, messages):
|
|
import gradio as gr
|
|
|
|
messages.append(gr.ChatMessage(role="user", content=prompt))
|
|
yield messages
|
|
for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False):
|
|
messages.append(msg)
|
|
yield messages
|
|
yield messages
|
|
|
|
def upload_file(
|
|
self,
|
|
file,
|
|
file_uploads_log,
|
|
allowed_file_types=[
|
|
"application/pdf",
|
|
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
|
|
"text/plain",
|
|
],
|
|
):
|
|
"""
|
|
Handle file uploads, default allowed types are .pdf, .docx, and .txt
|
|
"""
|
|
import gradio as gr
|
|
|
|
if file is None:
|
|
return gr.Textbox("No file uploaded", visible=True), file_uploads_log
|
|
|
|
try:
|
|
mime_type, _ = mimetypes.guess_type(file.name)
|
|
except Exception as e:
|
|
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log
|
|
|
|
if mime_type not in allowed_file_types:
|
|
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
|
|
|
|
|
|
original_name = os.path.basename(file.name)
|
|
sanitized_name = re.sub(
|
|
r"[^\w\-.]", "_", original_name
|
|
)
|
|
|
|
type_to_ext = {}
|
|
for ext, t in mimetypes.types_map.items():
|
|
if t not in type_to_ext:
|
|
type_to_ext[t] = ext
|
|
|
|
|
|
sanitized_name = sanitized_name.split(".")[:-1]
|
|
sanitized_name.append("" + type_to_ext[mime_type])
|
|
sanitized_name = "".join(sanitized_name)
|
|
|
|
|
|
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
|
|
shutil.copy(file.name, file_path)
|
|
|
|
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
|
|
|
|
def log_user_message(self, text_input, file_uploads_log):
|
|
return (
|
|
text_input
|
|
+ (
|
|
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
|
|
if len(file_uploads_log) > 0
|
|
else ""
|
|
),
|
|
"",
|
|
)
|
|
|
|
def launch(self, **kwargs):
|
|
import gradio as gr
|
|
|
|
with gr.Blocks(fill_height=True) as demo:
|
|
stored_messages = gr.State([])
|
|
file_uploads_log = gr.State([])
|
|
chatbot = gr.Chatbot(
|
|
label="Agent",
|
|
type="messages",
|
|
avatar_images=(
|
|
None,
|
|
"https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/communication/Alfred.png",
|
|
),
|
|
resizeable=True,
|
|
scale=1,
|
|
)
|
|
|
|
if self.file_upload_folder is not None:
|
|
upload_file = gr.File(label="Upload a file")
|
|
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
|
|
upload_file.change(
|
|
self.upload_file,
|
|
[upload_file, file_uploads_log],
|
|
[upload_status, file_uploads_log],
|
|
)
|
|
text_input = gr.Textbox(lines=1, label="Chat Message")
|
|
text_input.submit(
|
|
self.log_user_message,
|
|
[text_input, file_uploads_log],
|
|
[stored_messages, text_input],
|
|
).then(self.interact_with_agent, [stored_messages, chatbot], [chatbot])
|
|
|
|
demo.launch(debug=True, share=True, **kwargs)
|
|
|
|
|
|
__all__ = ["stream_to_gradio", "GradioUI"] |