Spaces:
Running
Running
Create ner_analyzer.py
Browse files- ner_analyzer.py +70 -0
ner_analyzer.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForTokenClassification, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
from typing import List, Tuple
|
4 |
+
import logging
|
5 |
+
from .base_analyzer import BaseAnalyzer
|
6 |
+
|
7 |
+
logger = logging.getLogger(__name__)
|
8 |
+
|
9 |
+
class NERAnalyzer(BaseAnalyzer):
|
10 |
+
def __init__(self):
|
11 |
+
self.model_name = "dominguesm/ner-legal-bert-base-cased-ptbr"
|
12 |
+
logger.info(f"Carregando o modelo NER: {self.model_name}")
|
13 |
+
self.model = AutoModelForTokenClassification.from_pretrained(self.model_name)
|
14 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
15 |
+
logger.info("Modelo NER e tokenizador carregados com sucesso")
|
16 |
+
|
17 |
+
def extract_entities(self, text: str) -> List[Tuple[str, str]]:
|
18 |
+
logger.debug("Iniciando extração de entidades com NER")
|
19 |
+
inputs = self.tokenizer(text, max_length=512, truncation=True, return_tensors="pt")
|
20 |
+
tokens = inputs.tokens()
|
21 |
+
|
22 |
+
with torch.no_grad():
|
23 |
+
outputs = self.model(**inputs).logits
|
24 |
+
predictions = torch.argmax(outputs, dim=2)
|
25 |
+
|
26 |
+
entities = []
|
27 |
+
for token, prediction in zip(tokens, predictions[0].numpy()):
|
28 |
+
entity_label = self.model.config.id2label[prediction]
|
29 |
+
if entity_label != "O":
|
30 |
+
entities.append((token, entity_label))
|
31 |
+
|
32 |
+
return entities
|
33 |
+
|
34 |
+
def extract_representatives(self, entities: List[Tuple[str, str]]) -> List[str]:
|
35 |
+
representatives = []
|
36 |
+
current_person = ""
|
37 |
+
current_organization = ""
|
38 |
+
|
39 |
+
for token, label in entities:
|
40 |
+
if label in ["B-PESSOA", "I-PESSOA"]:
|
41 |
+
current_person += token.replace("##", "")
|
42 |
+
else:
|
43 |
+
if current_person:
|
44 |
+
representatives.append(current_person)
|
45 |
+
current_person = ""
|
46 |
+
|
47 |
+
if label in ["B-ORGANIZACAO", "I-ORGANIZACAO"]:
|
48 |
+
current_organization += token.replace("##", "")
|
49 |
+
else:
|
50 |
+
if current_organization:
|
51 |
+
representatives.append(current_organization)
|
52 |
+
current_organization = ""
|
53 |
+
|
54 |
+
if current_person:
|
55 |
+
representatives.append(current_person)
|
56 |
+
if current_organization:
|
57 |
+
representatives.append(current_organization)
|
58 |
+
|
59 |
+
return representatives
|
60 |
+
|
61 |
+
def analyze(self, text: str) -> List[str]:
|
62 |
+
entities = self.extract_entities(text)
|
63 |
+
return self.extract_representatives(entities)
|
64 |
+
|
65 |
+
def format_output(self, representatives: List[str]) -> str:
|
66 |
+
output = "ANÁLISE DO CONTRATO SOCIAL (NER)\n\n"
|
67 |
+
output += "REPRESENTANTES IDENTIFICADOS:\n"
|
68 |
+
for rep in representatives:
|
69 |
+
output += f"- {rep}\n"
|
70 |
+
return output
|