Spaces:
Runtime error
Runtime error
Add caching
Browse files- PDF_Reader.py +4 -1
- QA_Bot.py +6 -5
- app.py +0 -2
PDF_Reader.py
CHANGED
@@ -2,7 +2,9 @@ import PyPDF2
|
|
2 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
4 |
from langchain.vectorstores import FAISS
|
|
|
5 |
|
|
|
6 |
def read_pdf(uploaded_file):
|
7 |
pdf_reader = PyPDF2.PdfReader(uploaded_file)
|
8 |
text = ""
|
@@ -10,6 +12,7 @@ def read_pdf(uploaded_file):
|
|
10 |
text += page.extract_text()
|
11 |
return text
|
12 |
|
|
|
13 |
def Chunks(docs):
|
14 |
text_splitter = RecursiveCharacterTextSplitter(
|
15 |
# Set a really small chunk size, just to show.
|
@@ -19,7 +22,7 @@ def Chunks(docs):
|
|
19 |
doc = text_splitter.split_text(docs)
|
20 |
return doc
|
21 |
|
22 |
-
|
23 |
def PDF_4_QA(file):
|
24 |
content = read_pdf(file)
|
25 |
pdf_chunks = Chunks(docs=content)
|
|
|
2 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
4 |
from langchain.vectorstores import FAISS
|
5 |
+
import streamlit as st
|
6 |
|
7 |
+
@st.cache_data
|
8 |
def read_pdf(uploaded_file):
|
9 |
pdf_reader = PyPDF2.PdfReader(uploaded_file)
|
10 |
text = ""
|
|
|
12 |
text += page.extract_text()
|
13 |
return text
|
14 |
|
15 |
+
@st.cache_data
|
16 |
def Chunks(docs):
|
17 |
text_splitter = RecursiveCharacterTextSplitter(
|
18 |
# Set a really small chunk size, just to show.
|
|
|
22 |
doc = text_splitter.split_text(docs)
|
23 |
return doc
|
24 |
|
25 |
+
@st.cache_resource
|
26 |
def PDF_4_QA(file):
|
27 |
content = read_pdf(file)
|
28 |
pdf_chunks = Chunks(docs=content)
|
QA_Bot.py
CHANGED
@@ -2,8 +2,7 @@ import streamlit as st
|
|
2 |
from QnA import Q_A
|
3 |
import re,time
|
4 |
|
5 |
-
|
6 |
-
def QA_Bot(vectorstore):
|
7 |
st.title("Q&A Bot")
|
8 |
# Initialize chat history
|
9 |
if "messages" not in st.session_state:
|
@@ -20,8 +19,7 @@ def QA_Bot(vectorstore):
|
|
20 |
st.chat_message("user").markdown(prompt)
|
21 |
# Add user message to chat history
|
22 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
23 |
-
|
24 |
-
ai_response = Q_A(vectorstore,prompt)
|
25 |
response = f"Echo: {ai_response}"
|
26 |
# Display assistant response in chat message container
|
27 |
with st.chat_message("assistant"):
|
@@ -29,9 +27,12 @@ def QA_Bot(vectorstore):
|
|
29 |
full_response = ""
|
30 |
for chunk in re.split(r'(\s+)', response):
|
31 |
full_response += chunk + " "
|
32 |
-
time.sleep(0.01)
|
33 |
|
34 |
# Add a blinking cursor to simulate typing
|
35 |
message_placeholder.markdown(full_response + "▌")
|
36 |
# Add assistant response to chat history
|
37 |
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
|
|
|
|
|
|
|
|
|
2 |
from QnA import Q_A
|
3 |
import re,time
|
4 |
|
5 |
+
def QA_Bot(_vectorstore):
|
|
|
6 |
st.title("Q&A Bot")
|
7 |
# Initialize chat history
|
8 |
if "messages" not in st.session_state:
|
|
|
19 |
st.chat_message("user").markdown(prompt)
|
20 |
# Add user message to chat history
|
21 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
22 |
+
ai_response = ai_proc(_vectorstore, prompt)
|
|
|
23 |
response = f"Echo: {ai_response}"
|
24 |
# Display assistant response in chat message container
|
25 |
with st.chat_message("assistant"):
|
|
|
27 |
full_response = ""
|
28 |
for chunk in re.split(r'(\s+)', response):
|
29 |
full_response += chunk + " "
|
|
|
30 |
|
31 |
# Add a blinking cursor to simulate typing
|
32 |
message_placeholder.markdown(full_response + "▌")
|
33 |
# Add assistant response to chat history
|
34 |
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
35 |
+
|
36 |
+
@st.cache_resource
|
37 |
+
def ai_proc(_vectorstore, prompt):
|
38 |
+
return Q_A(_vectorstore, prompt)
|
app.py
CHANGED
@@ -36,9 +36,7 @@ def main():
|
|
36 |
)
|
37 |
|
38 |
uploaded_file = st.sidebar.file_uploader("Choose a PDF file", type="pdf")
|
39 |
-
print("upload file before")
|
40 |
if uploaded_file is not None:
|
41 |
-
print("upload file not none")
|
42 |
# profiler = cProfile.Profile()
|
43 |
# profiler.enable()
|
44 |
st.sidebar.success("File uploaded successfully.")
|
|
|
36 |
)
|
37 |
|
38 |
uploaded_file = st.sidebar.file_uploader("Choose a PDF file", type="pdf")
|
|
|
39 |
if uploaded_file is not None:
|
|
|
40 |
# profiler = cProfile.Profile()
|
41 |
# profiler.enable()
|
42 |
st.sidebar.success("File uploaded successfully.")
|