Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| import random | |
| from diffusers import DiffusionPipeline | |
| from datasets import load_dataset | |
| from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| title = "GenAI StoryTeller" | |
| description = """ | |
| Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's | |
| [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech: | |
|  | |
| """ | |
| # Load speech translation pipeline | |
| asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) | |
| # Load text-to-speech processor from pretrained dataset | |
| processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
| model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device) | |
| vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) | |
| embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
| speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) | |
| # Load diffusion pipeline for image generation | |
| if torch.cuda.is_available(): | |
| torch.cuda.max_memory_allocated(device=device) | |
| pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
| pipe.enable_xformers_memory_efficient_attention() | |
| pipe = pipe.to(device) | |
| else: | |
| pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) | |
| pipe = pipe.to(device) | |
| if torch.cuda.is_available(): | |
| power_device = "GPU" | |
| else: | |
| power_device = "CPU" | |
| # Limit the file size | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| # Speech GenAI | |
| # Function for translating different language using pretrained models | |
| def translate(audio): | |
| outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) | |
| return outputs["text"] | |
| # Function to synthesise the text using the processor above | |
| def synthesise(text): | |
| inputs = processor(text=text, return_tensors="pt") | |
| speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) | |
| return speech.cpu() | |
| # Main function | |
| def speech_to_speech_translation(audio): | |
| translated_text = translate(audio) | |
| synthesised_speech = synthesise(translated_text) | |
| synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
| return 16000, synthesised_speech | |
| # Function for text to speech | |
| def text_to_speech(text): | |
| synthesised_speech = synthesise(text) | |
| synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
| return 16000, synthesised_speech | |
| # Image GenAI | |
| # Text to Image | |
| def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| image = pipe( | |
| prompt = prompt, | |
| negative_prompt = negative_prompt, | |
| guidance_scale = guidance_scale, | |
| num_inference_steps = num_inference_steps, | |
| width = width, | |
| height = height, | |
| generator = generator | |
| ).images[0] | |
| return image | |
| examples = [ | |
| "Dog licking ice cream", | |
| ] | |
| # CSS | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 520px; | |
| } | |
| """ | |
| demo = gr.Blocks() | |
| # Mic translation using microphone as the input | |
| mic_translate = gr.Interface( | |
| fn=speech_to_speech_translation, | |
| inputs=gr.Audio(source="microphone", type="filepath"), | |
| outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
| title=title, | |
| description=description, | |
| ) | |
| # File translation using uploaded files as input | |
| file_translate = gr.Interface( | |
| fn=speech_to_speech_translation, | |
| inputs=gr.Audio(source="upload", type="filepath"), | |
| outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
| examples=[["./english.wav"], ["./chinese.wav"]], | |
| title=title, | |
| description=description, | |
| ) | |
| # Text translation using text as input | |
| text_translate = gr.Interface( | |
| fn=text_to_speech, | |
| inputs="textbox", | |
| outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
| title=title, | |
| description=description | |
| ) | |
| with gr.Blocks(css=css) as image: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f""" | |
| # Text-to-Image | |
| Currently running on {power_device}. | |
| """) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| visible=False, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=512, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=512, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=0.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=12, | |
| step=1, | |
| value=2, | |
| ) | |
| gr.Examples( | |
| examples = examples, | |
| inputs = [prompt] | |
| ) | |
| run_button.click( | |
| fn = infer, | |
| inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
| outputs = [result] | |
| ) | |
| # Text to Image interface | |
| image_generation = gr.Interface( | |
| fn=infer, | |
| inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
| outputs=[result] | |
| ) | |
| # Showcase the demo using different tabs of the different features | |
| with demo: | |
| gr.TabbedInterface([mic_translate, file_translate, text_translate, image_generation], ["Microphone", "Audio File", "Text to Speech", "Text to Image"]) | |
| demo.launch() |