Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from langchain.embeddings import OpenAIEmbeddings
|
| 3 |
+
from langchain.vectorstores import Chroma
|
| 4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
+
from langchain.chat_models import ChatOpenAI
|
| 6 |
+
from langchain.chains import RetrievalQA
|
| 7 |
+
from langchain_community.document_loaders import TextLoader
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
os.environ["OPENAI_API_KEY"]=os.getenv('OPENAI_API_KEY')
|
| 11 |
+
# Initialize the embeddings and model
|
| 12 |
+
embd = OpenAIEmbeddings()
|
| 13 |
+
llm = ChatOpenAI(model_name="gpt-4", temperature=0)
|
| 14 |
+
|
| 15 |
+
# Initialize conversation history
|
| 16 |
+
if "conversation_history" not in st.session_state:
|
| 17 |
+
st.session_state.conversation_history = []
|
| 18 |
+
|
| 19 |
+
# Define the Streamlit app
|
| 20 |
+
st.title("Text File Question-Answering with History")
|
| 21 |
+
st.subheader("Upload a text file and ask questions. The app will maintain a conversation history.")
|
| 22 |
+
|
| 23 |
+
# File upload section
|
| 24 |
+
uploaded_file = st.file_uploader("Upload a text file", type=["txt"])
|
| 25 |
+
|
| 26 |
+
if uploaded_file:
|
| 27 |
+
# Load and split the text file
|
| 28 |
+
text_loader = TextLoader(uploaded_file)
|
| 29 |
+
document = text_loader.load()
|
| 30 |
+
|
| 31 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
| 32 |
+
doc_splits = text_splitter.split_documents(document)
|
| 33 |
+
|
| 34 |
+
# Create a vector store
|
| 35 |
+
vectorstore = Chroma.from_documents(
|
| 36 |
+
documents=doc_splits,
|
| 37 |
+
collection_name="conversation_history",
|
| 38 |
+
embedding=embd,
|
| 39 |
+
)
|
| 40 |
+
retriever = vectorstore.as_retriever()
|
| 41 |
+
|
| 42 |
+
# Initialize the QA chain
|
| 43 |
+
qa_chain = RetrievalQA.from_chain_type(
|
| 44 |
+
llm=llm,
|
| 45 |
+
chain_type="stuff",
|
| 46 |
+
retriever=retriever,
|
| 47 |
+
return_source_documents=True,
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# Question-answering section
|
| 51 |
+
query = st.text_input("Ask a question:")
|
| 52 |
+
|
| 53 |
+
if query:
|
| 54 |
+
result = qa_chain({"query": query})
|
| 55 |
+
answer = result["result"]
|
| 56 |
+
st.session_state.conversation_history.append((query, answer))
|
| 57 |
+
|
| 58 |
+
# Display the current answer
|
| 59 |
+
st.write("**Answer:**", answer)
|
| 60 |
+
|
| 61 |
+
# Display conversation history
|
| 62 |
+
st.subheader("Conversation History")
|
| 63 |
+
for idx, (q, a) in enumerate(st.session_state.conversation_history, 1):
|
| 64 |
+
st.write(f"**Q{idx}:** {q}")
|
| 65 |
+
st.write(f"**A{idx}:** {a}")
|
| 66 |
+
|