Spaces:
Runtime error
Runtime error
updated lb metrics
Browse files- leaderboard.py +47 -3
leaderboard.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
from glob import glob
|
| 2 |
-
from sklearn.metrics import accuracy_score, recall_score
|
| 3 |
import os
|
| 4 |
import pandas as pd
|
| 5 |
|
|
@@ -56,7 +56,7 @@ def get_duration_scores(df):
|
|
| 56 |
lb = pd.DataFrame({"Sample": columns, "Num Samples": samples_tested, "Accuracy": acc_scores})
|
| 57 |
return lb
|
| 58 |
|
| 59 |
-
def
|
| 60 |
|
| 61 |
columns = list(df[df.label != 'real'].algorithm.unique())
|
| 62 |
samples_tested = []
|
|
@@ -75,8 +75,52 @@ def get_algorithm_scores(df):
|
|
| 75 |
lb = pd.DataFrame({"Sample": columns, "Num Samples": samples_tested, "Recall": rec_scores})
|
| 76 |
return lb
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
def build_leaderboard(results_path = 'results'):
|
| 79 |
full_df = get_merged_df(results_path)
|
| 80 |
full_df_mapped = map_df(full_df)
|
| 81 |
-
leaderboard =
|
| 82 |
return leaderboard
|
|
|
|
| 1 |
from glob import glob
|
| 2 |
+
from sklearn.metrics import accuracy_score, recall_score, f1_score
|
| 3 |
import os
|
| 4 |
import pandas as pd
|
| 5 |
|
|
|
|
| 56 |
lb = pd.DataFrame({"Sample": columns, "Num Samples": samples_tested, "Accuracy": acc_scores})
|
| 57 |
return lb
|
| 58 |
|
| 59 |
+
def get_algorithm_scores_v1(df):
|
| 60 |
|
| 61 |
columns = list(df[df.label != 'real'].algorithm.unique())
|
| 62 |
samples_tested = []
|
|
|
|
| 75 |
lb = pd.DataFrame({"Sample": columns, "Num Samples": samples_tested, "Recall": rec_scores})
|
| 76 |
return lb
|
| 77 |
|
| 78 |
+
def get_algorithm_scores_v2(df):
|
| 79 |
+
|
| 80 |
+
columns = list(df[df.label != 'real'].algorithm.unique())
|
| 81 |
+
columns2 = list(df[df.label != 'real'].label.unique())
|
| 82 |
+
samples_tested = []
|
| 83 |
+
acc_scores = []
|
| 84 |
+
tpr_scores = []
|
| 85 |
+
tnr_scores = [float('nan')]*(len(columns) + len(columns2))
|
| 86 |
+
f1_scores = [float('nan')]*(len(columns) + len(columns2))
|
| 87 |
+
|
| 88 |
+
for c in columns:
|
| 89 |
+
mask = (df.algorithm == c)
|
| 90 |
+
sel_df = df[mask]
|
| 91 |
+
|
| 92 |
+
samples_tested.append(len(sel_df))
|
| 93 |
+
tpr_scores.append(round(recall_score(sel_df.gnd_truth.values, sel_df.pred.values, pos_label=1), 3))
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
for c in columns2:
|
| 97 |
+
mask = (df.label == c)
|
| 98 |
+
sel_df = df[mask]
|
| 99 |
+
|
| 100 |
+
samples_tested.append(len(sel_df))
|
| 101 |
+
tpr_scores.append(round(recall_score(sel_df.gnd_truth.values, sel_df.pred.values, pos_label=1), 3))
|
| 102 |
+
|
| 103 |
+
mask = (df.label != "real")
|
| 104 |
+
sel_df = df[mask]
|
| 105 |
+
|
| 106 |
+
tpr_scores.append(round(recall_score(sel_df.gnd_truth.values, sel_df.pred.values, pos_label=1), 3))
|
| 107 |
+
|
| 108 |
+
mask = (df.label == "real")
|
| 109 |
+
sel_df = df[mask]
|
| 110 |
+
|
| 111 |
+
tnr_scores.append(round(recall_score(sel_df.gnd_truth.values, sel_df.pred.values, pos_label=0), 3))
|
| 112 |
+
|
| 113 |
+
sel_df = df.copy()
|
| 114 |
+
samples_tested.append(len(sel_df))
|
| 115 |
+
f1_scores.append(round(f1_score(sel_df.gnd_truth.values, sel_df.pred.values, average="macro"), 3))
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
lb = pd.DataFrame({"Sample": columns + columns2 + ["overall (real + fake)"], "Num Samples": samples_tested,
|
| 119 |
+
"TPR": tpr_scores, "TNR": tnr_scores, "F1": f1_scores})
|
| 120 |
+
return lb
|
| 121 |
+
|
| 122 |
def build_leaderboard(results_path = 'results'):
|
| 123 |
full_df = get_merged_df(results_path)
|
| 124 |
full_df_mapped = map_df(full_df)
|
| 125 |
+
leaderboard = get_algorithm_scores_v2(full_df_mapped)
|
| 126 |
return leaderboard
|